ИССЛЕДОВАНИЕ СТЕПЕНИ ОКИСЛЕННОСТИ ПОДКОЖНОЙ ЖИРОВОЙ ТКАНИ СВИНИНЫ ПРИ НИЗКОЙ ПОЛОЖИТЕЛЬНОЙ И СУБКРИОСКОПИЧЕСКОЙ ТЕМ-ПЕРАТУРАХ ХРАНЕНИЯ

INVESTIGATIONS OF THE OXIDATION DEGREE OF PORK SUBCUTANEOUS ADIPOSE TISSUE AT LOW ABOVE-ZERO AND SUBCRYOSCOPIC STORAGE TEMPERATURES

В последние годы в Советском Союзе /І-2/ и ряде стран Западной Европы /3-5/ широко применяется способ быстрого охлаждения мяса в интенсивно движущемся воздухе с температурой ниже О°С. Это повышает технологический и экономический эффект.

Еце больший экономический эффект достигается при хранении подмороженного мяса в условиях субкриоскопических температур, т.е. температуры на I, 2°С ниже точки замерзания мышечных соков данного продукта /6, 7/.

Совершенствование процессов холодильной обработки и хранения мяса предполагает применение таких рациональных режимов, которые способствуют не только продлению срока хранения и снижению при этом естественных потерь, но и наиболее полному сохранению пищевой ценности и товарного качества мяса.

Во ВНИХИ (Москва) исследованы окислительные изменения подкожной жировой ткани свиных полутуш, охлажденных при ±0 и -5°С, в процессе хранения при 0-0,5°С и подмороженной при -20°С в процессе длительного хранения при температуре от -2,0 до -2.5°С. а также при последующем отеплении.

Отбирали срезы поверхностного и внутреннего слоев хребтового шпика свиной полутуши. Поверхностный слой срезали на глубину 5 мм. Экстрагировали жир хлороформом /8/.

Интенсивное (-5°C) охлаждение прекращали по достижении в центре бедра 4°С, подмораживание (-20°С), в центре длиннейшего мускула спины - -I, 2°С. Охлажденную свинину хранили при температуре 0-0,5°C, подмороженную - при температуре от -2,0 до -2.5°C в штабелях-клетках высотой I,4 м.

После 25-суточного хранения от -2,0 до -2,5°C свиные полутуши отепляли при 5 и 15°C до 0°C в глубине лопатки.

Об окислительных изменениях подкожной жировой ткани на об окислительных изменениях подкожной жировой ткани на различных стадиях хранения свиных полутуш судили по накопле-нию перекисей, которые определяли йодометрическим методом в модификации Зиновьева /9/, и по реакции с 2-тиобарбитуровой кислотой (2-ТБК) методом Сидвелла и др. /IO/. В процессе хранения свиных полутуш под влиянием биологи-ческих, физических и химических факторов в нодкожной жировой ткани происходят многообразные превращения. В результате это-

го постепенно ухудшаются ее органолептические показатели и пищевая ценность, которые всегда рассматриваются в совокупности

со свежестью, характеризуемой лишь глубиной развития процессов окисления.

Изменение первичных продуктов окисления — перекисей (в % йода) в подкожной жировой ткани в различные периоды хранения свиных полутуш показано в табл. I.

В начале хранения в течение некоторого времени химические и органолептические показатели подкожной жировой ткани не изменяются или почти не изменяются. К концу хранения охлажденной свинины (7 и IO сут.) в поверхностном слое жировой ткани значения перекисных чисел составили около 0,01% йода, во внутреннем слое – еще ниже. К концу хранения подмороженной свинины (25 сут.) перекисное число в поверхностном слое подкожной жировой ткани было около 0,02% йода, во внутреннем – вдвое меньше.

Таблица І

Продолжи-	Поверхностный слой			Внутренний слой		
тельность хранения, сут.	Охлаждение, ^о С		Подмораж. ⁰ С -20	Охлажд <u>+</u> 0	цение, ^о С	Подмораж. ⁰ С -20
5 7 TO	0,005 0,010	0,004 0,008	0,000 0,002 0,006	0,000 0,003	0,000 0,003 0,005	0,000
10	снята	с хран.	0,000	снята	с хран.	0.000
15 20			0,010 0,017			0,004
25	-0~		0,024			0,012
25 +0,5 ng 25 + 3	n 5°C	·	0,027			0,026
25 + 0,5 I	ири 15 ⁰ 0		0,051			0,017
25 + 3 Приме	п чание.	При хран	U,121 цении охлажде с (-20 ⁰ C) сви	нных (³ ных пол	±0 и - 5 ⁰ путуш в	С) и подмо- поверхност-

римечание. При хранении охлажденных (то и -5°С) и подмороженных (-20°С) свиных полутуш в поверхностном и внутреннем слоях подкожной жировой ткани перекисные числа равнялись 0.

Окислительные изменения подкожной жировой ткани происходят по всей ее толще, хотя их интенсивность во внутреннем слое вдвое меньше, чем в поверхностном. Это явление отмечено также

другими исследователями /II, I2/. Некоторые авторы связывают окисление с адсорбцией кислорода из воздуха, а также с некоторым содержанием в ткани гемоглобина /14-16/. Жировая ткань. особенно поверхностный слой, отличается высокой адсорбцией кислорода воздуха. С другой стороны, гемоглобин, который обуслов ливает бледно-розовую окраску свежей подкожной жировой ткани свиных полутуш, также содержит кислород / I4, I7/. Он может способствовать окислению как поверхностного, так и внутреннего слоев подкожной жировой ткани свиных полутуш за счет десорбции кислорода. Кроме того, гемоглобин содержит в своем составе железо, являющееся катализатором окисления жиров и в первую очередь жиров, содержащих ненасыщенные жирные кислоты, каким и является подкожная жировая ткань свиных полутуш. Поэтому некоторые авторы /18/ полагают, что адсорбция кислорода воздуха и десорбция его из гемоглобина являются основными факторами. определяющими специфичность накопления перекисей в подкожной жировой ткани. Если доступ кислорода к ней не ограничен, как в наших опытах, то на определенном этапе хранения, наряду с образованием перекисей, начинается образование вторичных продуктов окисления, в частности, альдегидов /19/. В наших опытах это явление наблюдалось при отеплении свиных полутуш.

О глубине окислительного процесса мы судили также по накоплению малонового диальдегида, реагирующего с 2-ТЕК с образованием окрашенного соединения. Интенсивность развившейся окраски измеряли на фотоэлектрокалориметре с зеленым светофильром. Количество образовавшегося в ткани малонового диальдегида выражали в мг на IOOO г продукта, для чего величину оптической плотности умножали на константу 7,8 /20/. Данный показатель авторы /20/ назвали тиобарбитуровым числом (ТЕЧ).

Известно, что перекиси не имеют ни запаха, ни вкуса /13/, но образующиеся при их превращениях вторичных продукты распада в большинстве своем таковыми обладают /13, 21/. Однако даже абсолютно свежая жировая ткань содержит некоторое количество карбонильных соединений, определяющих ее специфический запах /15, 22/. Малоновый диальдегид не имеет специфического запаха и вкуса, но по его накоплению в ткани можно судить об образовании вторичных продуктов распада, которые отрицательно влияют на органолептические свойства. Изменение ТБЧ (в мг малонового альдегида на 1000 г жировой ткани) в процессе хранения свиных полутуш показано в табл. 2.

Таблица 2

Продолжи-	Поверхн	Поверхностный слой			слой
тельность хранения,	Охлаждение	ос Подмораж. ос	одмораж. ^О С Охлажден		Подмораж. ОС
сут.	±0 -5	-20	±o	-5	-20
0	0,179 0,17	9 0,179	0,094	0,094	0,094
7	0,296 0,29	0,2II	0,190	-	-
IO	- 0,31	2 0,242	-	0,200	0,122
	снята с хр	H.	снята	с хран.	
15		0,240			-
25		0,343			0,172
25 + 0,5	при 5 ⁰ С	0,410			0,195
25 + 3	11	0,523			0,250
25 + 0,5	при 15 ⁰ С	0,499			0,234
25 + 3	n	I,583			0,952

Как видно из таблицы, за период хранения свиных полутуш, охлажденных как при О, так и при -5°С, величина ТБЧ как поверхностного, так и внутреннегослоев подкожной жировой ткани возрастала примерно в I,7 раза по сравнению с первоначальной величиной, которая в свою очередь во внутреннем слое была в 2 раза ниже, чеш в поверхностном.

К концу 25-суточного хранения при температуре от -2,0 до -2,5°С предварительно подмороженных свиных полутуш величина ТБЧ поверхностного слоя подкожной жировой ткани была немного выше, чем на 7 и IO сут. хранения у охлажденных свиных полутуш, а ТБЧ внутреннего слоя равнялась начальной величине ТБЧ поверхностного слоя. Лишь при размораживании полутуш после 25-суточного хранения при субкриоскопической температуре ТБЧ значительно повышалось. Величина ТБЧ подкожной жировой ткани свиных полутуш, отепленных при I5°C в течение I2 час. и 5°Cв течение 3 сут., была примерно одинакова, но и в этом случае соотношение конечных значений ТБЧ поверхностного и внутреннего слоев ткани к концу указанного периода хранения со-

E. _

ставляло 2:1. Органолептические и химические показатели были взаимосвязаны. Начальное исчезновение бледно-розового оттенка в поверхностном слое подкожной жировой ткани в наших опытах происходило к концу хранения охлажденных полутуш при перекисном числе немногим больше 0,01% йода, что согласуется с данными других исследователей /12/, но во внутреннем слое и в конце хранения обесцвечивания не наблюдалось. Подкожная жировая ткань полутуш, хранившихся при температуре от -2,0 до -2,5°С, даже в конце хранения, при перекисном числе 0,024% йода, в поверхностном слое не обесцвечивалась. Оно было отмечено лишь при отеплении свинины в поверхностном и внутреннем слоях, что, вероятно, можно объяснить усиленной десорбцией кислорода из гемоглобина, содержащегося в подкожной жировой ткани, при повышении температуры /18/. Слегка осалившиеся вкус и запах в поверхностном слое появились лишь через 3 сут. хранения свиных полутуш при 15°С при достижении ТБЧ значения I.58.

Однако срок хранения свиных полутуш в наших опытах ограничивался прежде всего возможностью сохранения их товарного качества в целом. После 7-8 сут. хранения свиных полутуш (охлаждены при $\pm 0^{\circ}$ С), IO-II сут. (охлаждены при -5° С) и 25-30 сут. (подморожены от -2,0 до -2,5°С) наблюдалось потемнение мышечной ткани шейного зареза, среза диафрагмы, некоторое посерение позвоночника по распилу и др. Указанные изменения товарного вачества свиных полутуш не позволяли хранить их более указанных сроков.

Окислительные изменения подкожной жировой ткани не лимитировали допустимых сроков хранения свинины.

выводы

I. Скорость накопления перекисных соединений в поверхностном слое подкожной жировой ткани свиных полутуш в 2-3 раза больше, чем во внутреннем слое.

2. Значения ТБЧ подкожной жировой ткани свиных полутуш, охлажденных при ±0 и -5°С, в процессе хранения при низкой положительной температуре и подмороженных при -20°С в процессе хранения при субкриоскопической температуре, к концу хранения (350) близки междусобой и составляли в поверхностном слое около 0,3 мг на IOOO г ткани, во внутреннем – в I,5-2 раза ниже, чем в поверхностном.

3. Интенсивное охлаждение (-5°С) с последующим хранением при низкой положительной температуре и подмораживание (-20°С) с последующим хранением при субкриоскопической температуре позволяют продлить срок хранения свинины в первом случае до IO-II, во втором - до 25-30 вместо 7-8 сут. при хранении свинины, охлажденной при ±0°С и хранившейся при этой же температуре.

ЛИТЕРАТУРА

- I. Шеффер А.П., Саатчан А.К. Быстрое охлаждение мяса методом воздушного душирования. М., ЦИНТИПищепром, 1967.
- 2. Герасимов Н.А., Малеванный Б.Н. "Холодильная техника", I, 1968.
- 3. Jasper W. "Die Fleischwirtschaft", 2, 8, 1959.
- 4. Kuprianoff I. "Die Kälte", 3, 1958.
- 5. Jul M., Nielsen H., Petersen H. "Die Fleischwirtschaft", 12, 4, 1960.
- 6. Головкин Н.А., Шаган О.С. "Холодильная техника", 2, 1964.
- 7. Головкин Н.А., Ноздрункова И.Р., Шаган О.С. Переохлажденное мясо. М., ЦИНТИПищепром, 1966.
- 8. Пиульская В.И. Мясн.индустр.СССР", I, 9, 1958.
- 9. Зиновьев А.А. Химия жиров. М., Пищепромиздат, 1952.
- 10. Sidwell C.G., Salwin H., MitchellJ.H. et al. "J.Am. Oil Chemists Soc.", 32, 13, 1955.
- II. Новикова Е.И. "Мясн.индустр.СССР", I, 1961.
- I2. Пугачев П.И. Влияние свойств упаковочных материалов на качественные изменения в процессе хранения замороженной говяжьей мышечной ткани и шпика. Автореферат, М., 1965.
- IЗ. Павловский П.Е., Пальмин В.В. Биохимия мяса и мясопродуктов. М., Пищепромиздат, 1963.
- I4. Кожуев П.А. М.-Л., Изд-во АН СССР, 1949.
- I5. Jounathan M.T., Watts B.M. Food Research, 24, 6, 728-734, 1959.
- 16. Крылова Н.Н., Лясковская Ю.Н. "Биохимия мяса". Пищевая промышленность, 1968.

(351)

- 17. Балаховский С.Д., Балаховский И.С. Методы химического анализа крови. М., Медгиз, 1953.
- I8. Neimann H.D., Brady D.E., m.Palmer A.L., Tucker L.N. "Food technol.", 5, 12, 1951, 496.
- I9. Комарова В.Н. "Мясн.индустр.СССР", 2, 1955.
- 20. Tarladgis B.C., Watts B.M., Jouna-
- than M.T. "J.AmOil Chemists Soc.", v.37, 44-48, 1960.
- 21. Pietzzyk C. Poczniki Technologi i Chemil Zywnosci, 111, 77, 1958.
- 22. Chipault U.R., Privett O.S., Mizuno V.R., Nickell E., Lundbery W.O. Industrialand engineering chemistry, 49, 10, 1957, 1713-1720.

Storage time, days	Surface layer				Inner layer		
	Chilling, °C		Slight free zing, C	- Chil	ling,°C	Slight of ree- zing, C	
	0	-5	-20	0	5	-20	
5 7 10	0.005 0.010	0.004 0.008 0.010 from	0.000 0.002 0.006	0.000 0.003	0.000 0.003 0.005 d from	0.000 0.000 0.000 sto-	
$\begin{array}{c} 15\\ 20\\ 25+0.5 \text{ at}\\ 25+3\\ 25+0.5 \text{ at}\\ 25+0.5 \text{ at}\\ 25+3\\ \end{array}$	5°C 15°C	ge	0.010 0.017 0.024 0.027 0.034 0.051 0.121	r	age	0.000 0.004 0.012 0.016 0.026 0.017 0.081	

<u>Note</u>: During storage of chilled (±0 and -5°C) and slightly frozen (-20°C) pork sides, peroxide numbers in the surface and inner layers of the fat tissue were 0.

Table 2

Storage			Surfac	e layer	Inner layer		
time, days		Chilling,°C		Slight free- zing, C	Chilling, °C		Slight free- zing, C
		0	-5	-20	0	5	-20
0 7 10		0.179 0.296	0.179 0.290 0.312	0.179 0.211 0.242	0.094 0.190	0.094 0.200 from s	0.094 0.122
15 25 25+0.5 at 5°C 25+3 # 25+0.5 at 15°C 25+3 #			0.240 0.343 0.410 0.523 0.499 1.583	r	age	0.172 0.195 0.250 0.234 0.952	