
F ormation-r e l a x a t i o n c ha ract erist ics of beef me a t und e r axial
COMPRESSION

The texture of beef muscular tissue, which is complex, can 
represented as muscle fibers bound with a spatial connective 

m®nibrane. All the interstices of the structure are filled with 
tissue juice - loosely and strongly bound moisture. By the cha­
racter and strength of bonds among the particles, muscular tis­
sue can be partially referred to condensation-crystallization 
systems /l/. Such structures, possesing a number of properties 
°i solid bodies, have certain specific peculiarities - elasti- 
°lty, plasticity, etc. These should be taken into account when 
s®leoting most expedient methods and conditions for technologi- 
C * 1 processing.

Though numerous detailed studies on the structural—and—me— 
c^anical (rheological) properties of ground meat / 2 , 3/ are 
known, properties of intaot muscular tissue are studied insuffi- 
ciently. Some authors A ,  8/ investigated muscular tissue defor­
ation at axial compression as related to the load applied and 
^  different conditions of loading. Besides, time effects charac- 
isrized with elasticity and relaxation, were measured in dynamios 

10/. Pointing to the non-linear character of the deformation 
^®haviour of meat, the authors /7 - H /  suggest empirical formulae 

the relation of sample relative deformation to load value, 
should, however, mention the conditional charaoter of the sug­

gested relations as the degree of compression at a given load de­
fends on the instant of observation, loading conditions, sample 
shape and size, kind of meat, its texture, anisotropy, etc.,the 
^ime factor here being of a decisive role due to the fact that 
*he structure contains tissue juice of a certain viscosity.

This paper deals with the character of the deformation beha­
viour of intact beef muscular tissue at axial compression across 

fibers. Experiments were performed on samples of beef quadri- 
°®ps taken on the 2nd day after slaughter. Samples had a square 
°toss—section, the area of 30x30 mm and were 1 0  to 2 0 mm high.
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Test were made on a plastometer-type device, specially desig­
ned in the MTIMMP, whioh allows to record simultaneously deforma­
tion and load as related to time. A schematic diagram of this de­
vice is shown in Fig. 1 . Samples were compressed in between two 
polished plates due to the movement of the upper plate under a 
pusher mounted in the guides. The lower plate is fixed to the 
baseplate. The device was dri/en with a d.o. motor, Torsional mo­
ment was transferred via a reducer to a pulley and further to the 
pusher via a flexible cable and a system of levers with a counter­
weight. Cyclic loading of samples was effeoted by replacing the 
pulley with a cam. The downward movement of the pusher was res­
tricted with an end switch. Compressive strain was reoeived with 
a resilient element, onto which tensometric transducers were 
the latter being connected to a measuring self-recording KC S-A-W" 
pe ponentiometer. Sample deformation was registered with a varial3'- 
le resistor attached to another self-recording KCIE-A-type poten­
tiometer.

Fig. 1. A schematic diagram of plastometer
1  - sample; 
le resistor; 
plates; 9 -
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Axial compression was effected under two conditions - statio 
511,1 cyclic - within loads ranging from 0 to 1.2x10^ Pa. Statio 
■'■oading lasted 180 sec. under a pre-set load; then the load was re­
leased and the character of the recovery of the deformed sample was 
studied. When studying creep, sample loading time was extended 

300 sec. For cyclio loading^time lasted 2 seo.
The character of sample deformation under statio loading and 

t̂ e subsequent return to the initial state axe shown in Fig. 2, 
°urve £  (i) with <£, = 0,11x10^ Pa. As is seen,sample
total deformation ot at any moment "t" oan be represented as 
a »urn of three components:

£ t o t  -  ^  'ze* , (l)

îiere 6 ^  is instantaneous resilient deformation;
is elastio (relaxation) deformation; 
is plastic residual strain.

In its turn, ¿Tpi is a sum of two addends:

Z p t . ( 2 )

***re i8 instantaneous plastic strain;
dn is developing plastio strain.

Instantaneous plastio strain is a result of microplastio 
drains occurring due to muscle fibers displacement throughout 
*ke sample; developing strain is conneoted with tissue juice se- 
^atation and the subsequent compression of the structure; instan­
taneous resilient and elastio deformations are connected with 
Ylsco—resilient properties of the material as a whole, connecti- 
v* tissue elasticity and tissue juice viscosity.

To reveal the character of the relations of different compo- 
ft®ht8 of deformation to the value of the load applied, curves for 
°£eep were plotted (Fig. 3), and samples under oyclic loading we- 

tested. The analysis of these curves indicated that at suffi- 
°lently long loading the rate of deformation tended towards the 
0°h8tant limit (at a pre-set load) and depended linearly on the
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value of the load applied. The total deformation of the sample 
for similar instants on the creep curves depended nonlinearly 011 
the value of the load (Fig* 4, Curves 1-5). At the loads up to
0.8x10 Pa the yielding of the samples decreased gradually; then» 
at & * 0.8*10^ Pa it increased sharply, this indicating the ini­
tiation of the local breakage of the fibers. From Fig. 4 it is 
obvious that the relaxation component of the deformation 
and the developing plastio strain c.pj> depend linearly on •

Fig. 2. A typical example of the deformation behaviour of meat 
samples at axial compression ( 6 = 0.11x10 Pa) 

t-̂ - 180 seo. - the moment of releasing the external load
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^8* 3. Creep curves at a oonstant load; the values of
¿ xlO^ Pa:

1 - 0.11; 2 - 0.22; 3 - 0.33; 4 - 0.44; 5 - 0.55; 6 - 0.66; 
7 - 0.78; 8 - 0.89; 9 « 1.00; 10 - 1.11
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Fig. 4. The total deformation as related to the value of the 1°^ 
applied for similar instants Ht", seo.: 1 - 0 ;  2 - 60;

3 - 12»; 4 - 180; 5 - 240
Instantaneous resilient strain I and instantaneous 
plastic strain II as functions of the load applied
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the data obtained for oyclio loading it was determined 
that both <£re*. and £ Lpl depended nonlinearly on the value of the 
load applied (curves I and II, Fig. 4). As these components of the 
d®£ormation do not depend on wt", the general relation of 
^  to l can be represented as follows:

f i r -  ( 3 )

(4)

^ere £T (¿) is the effective modulus of elasticicty;
is the effeotive modulus of instantaneous plas­
ticity.

In the system of coordinates -§~ (¿) , the relationships (3) 
411,1 (4) at loads within 0 to 0.85xl05 Pa may be reduced to linear 
0ri6®, i.e.:

—  -  A l — > +  i -  
fij A oz (¿)= A  <£ 

y ¿> (5)

7s

B p  ( D J f  a

j .A <£
( 6)

*kere J)j , Jtj; , d T and d  ̂  axe certain constants* 
Comparing (3-4) with (5—6), we find:

(7)

h a ) = - j r ( u ^ }
( 8)

Substituting the numerical values of constants for Expressions 
Shd 8, we obtain^
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Fig. 5. Nonlinear rheological model of intaot muscular
tissue
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£  U )  = 2 . 5 x l 0 5 + 1 5  , Pa;

En (¿) = 1 *2 5 x 1 0 ^ + 5  , Pa. (10)

(9)

On the basis of the experimental data obtained, a nonlinear 
Geological model of inifcot muscular tissue can be suggested

5) , whioh is composed of the following elements! Kelvin ele­
ment ( £ ^ ) whioh provides the relaxation component of defor­
mation ¿Zgj? ; nonlinear resilient element Ej and nonli-»

Maxwell element £ /T (¿) t bridged with a look çb ,
latter providing residual plastic strain ^ pi • When the load 

Wa® applied, the rod of the lock moved free^ downward; when the 
■̂°ad was released, the lobes of the lock engaged the grooves and 

not allow the spring E ¡j (¿) to return to the Initial po­
tion. Under a higher load the element deformed irreversibly

The relation of the deformation EpP to the stress was 
determined by means of the paramétrés E¡j (¿) and ^  and depen­
d'd on the pre-history of deformation. The damper  ̂ provided 
^astio strain Ep^ , developing with time,and, when the exter- 
UaJ- load was released, - the relaxation of residual stresses on
the
tht

spring E,j (¿) ; so, on the whole, the model was free from
e*naJL ("frozen") stresses*
The total deformation of the model is represented as ratios

<1) and (2); the deformations of nonlinear elements E te * and c: <*4 7depending on the stress 6 applied - as expressions
^  and (4 ) (respectively)*

For the rest of the elements of the model, e.g. /12/,

+ ETSe£ ; (11)

f - p 1/  -  
" T

d

( 12)
Excluding particular deformations , ¿ > 7  , U  ,

^ f r o m  expressions (1—4), (ll) and (12), we derived the fol­
ding nonlinear differential rheological 2nd-order equation rela- 

tlv» to l and E x
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(13)i ~£ -f y cîz r 7* 7> f
a t  c ^ L - T T Ï > J + a t L ÏÏî)J J d id i  t

where £ (¿y _ ¿fr ' £V (¿)
£r U )  +  £ >  w

Is reduced ndnlinear modulus of elasticity;
7- l  ' ?

is reduced coefficient of viscosity;

(14)

(15)

d = — p ~  (16)

is deformation relaxation time.
Let us apply the above equation to studying the creep under 

constant load. At d =const equation (13) will become

+ £  = -&- (17)

This Is a linear Inhomogeneous differential 2nd-order equation 
with the right member being constant.

The initial conditions (at t=0) were as follows:
, i  - è

EgU) ~ E d ) ( 18)

£  (Q)s  J L  + j L  ;  j L  . (19)t, £  t
Equation (1?) with the initial conditions (18) and (19) is 

solved as follows:

6 ( i ) = m " x t + i ( f - e ' i )  (20)

Differentiating (20) in relation to time "t" and
to the limit at t — ► V  > we found that for the oreep rate 

limit
£  • (2i)
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means of equation (13) we studied the character of ŝ njple 
^oovery after releasing the external load at tn (Fig. 2). In
thi8 oase, instead of (17), we shall have (at & *0) :

( 22)

The initial deformation of the model was determined from the 
devious formula at tst-̂ ; minus the instantaneous resilient defor­
mation of Ej( ¿> ) it was equal to:

(23)

initial velooity was determined o n ly  with the initial de­
cimation rate of the Kelvin element /12/:

(24)

Having solved equation (22) with the initial conditions (.23) 
^44 (2^)f We obtained:

6 (*> - p )  + Xt' * (25)
Passing over to the limit at t , we found residual de­

stination S  re i id (tj), which depends on the instant of exter- 
load release:

(26)

Phenomenological constants E-̂ , ^  and 4  and deformation
**xation time were determined by the experimental data in 

*c°ordanoe with the above solutions. Proceeding from the ratio 
oreep rate limit (21) and from the data in Fig. 3, we calcu- 

ted the values of the coefficient of visoosity ? as being 
^out 5#2xl08 Pa*sec. Relaxation time , calculated by reoove- 
^ curves (Fig. 2), turned out to be equal to about 45 seo. Then, 
fording to equation (25), E,^3.8xl05 Pa. The seoond coeffioi-(hi, J-^ 6 of viscosity V was determined by expression (16) asC , r  1 7

£i as equal to 1.7x10' Pa*seo.
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The objective data obtained, whioh characterize muscular tls 
sue texture, can be used both for technological purposes, and 
for the evaluation of certain quality aspeots of foods.
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