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Introduction

The appearance of meat may be profoundly affected by the metabolic events
which take place in muscle post mortem and a major influence upon its
appearance is exerted by the light scattering power of the constituent muscle
fibres. A particularly dramatic instance of this effect is the appearance
of pale soft and exudative pork which owes its peculiar appearance very
largely to its very high light scattering ability (1).

In view of its importance, we aim to study the 1ight scattering properties of
muscle to establish which structures within the muscle fibre are the main
contributors to the scatter and to determine how their contribution changes
with variations in the physiological state of the cell.

This preliminary study has been devoted to the 1ight scattering change
induced by the onset of rigor mortis. It has shown that a large increase in
scatter results from the establishment of ‘rigor bonds' between the thick and
thin filaments of the contractile apparatus.

It is known that the light scattering power of a relaxed muscle is increased
both during contraction (2,3,4) and with the onset of rigor mortis (5) and
there are indications from previous work that both the optical changes due to
contraction (4) and those due to rigor (6) are dependent upon the degree of
overlap of the thick and thin filaments. The present measurements, which
have been made both upon substantial pieces of muscle tissue and upon single
muscle fibres, aim to pursue the rigor-induced scattering increase in a
quantitative manner and to compare the behaviour of whole muscle and of
single muscle fibres. In the latter case the experimental conditions can be
rather precisely controlled and indeed the relaxed, contracting and rigor
states can be generated at will; it is, however, highly desirable to be able
to relate experimental results obtained with single fibres to the behaviour
of the whole muscles which are the concern of commercial practice and this
was a particular aim of the present measurements.

Methods

Three different optical set-ups were used in these experiments (see Fig. 1).
A and B were employed with substantial pieces of muscle and C was used to
make optical measurements on single muscle fibres; the latter were combined
with simultaneous mechanical measurements of isometric force and of stiffness
using exceedingly small (~0.03%) sinusoidal length changes (at 77Hz) as
previously described (7).

The illumination, derived from an appropriate light emitting diode in each
case, was delivered to the specimen by a suitable fibre optic 1ight guide.

In B and C a 1ight guide was also used to convey light from the specimen to
the detector - a silicon photodiode. The various light emitting diodes were
pulsed at high frequency (30-50 KHz) and the resultant pulsed illumination
produced a modulated signal at the photodetector. This arrangement
permitted the rejection by high-pass filters, of steady or slowly changing

interfering signals caused by background illumination, whilst in (C) it
enabled, in addition, the use of lock-in amplifiers to extract from
background noise the rather small signal received at the photodetector.

The 3 light emitting diodes (LED's) used in A provided rather narrow band
illumination (25-40 nm at half height) centred upon 565, 655 and 940 mm,
whilst all the measurements reported here with arrangements B and C used a
near infra-red (940 nm) source alone. In arrangement A, measurements at
three wavelengths were made effectively simultaneously by projecting pul ses
at the sample in rapid succession from three different LED's each of which
was illuminated for 8 ps. The repetition rate of the pulse train was 15
KHz. Suitable decoding circuitry was used to demodulate the resul tant
pulsed signal from the photodiode detector. In measurements of myoglobin
oxygenation a LED emitting maximally at 585 nm was substituted for the 940 nm
LED. The light guides used consisted of a bundle of glass optical fibres
which was subdivided by diverting the fibres at random into three or two
sub-bundles in A and B respectively. The overall diameter of the combined
guide was 2 mm (A) and 3 mm (B). 1In C, single silica optical fibres (0.25
mm core diameter) were used, with the muscle fibre mounted between a force
transducer and a displacement transducer (along an axis normal to the plane
of the paper).

The geometry of the arrangement was such that A measured light transmission
by the specimen (path length 3mm). The 1ight guide and detector were in
close contact with,1 mm thick perspex plates which sandwiched the preparation
(detector area 9mm“). B by contrast, measured 1ight back-scattered from the
preparation. In both of these cases the muscle fibre axis was normal to the
optic axis of the light guide. In C, however, such measurements of
transmission and backscatter were difficult to make for technical reasons and
so modulated infra- red 1ight incident upon the specimen normal to the muscle
fibre axis was collected by two optica)l fibres (each subtending about 0.1
steradians at the specimen), one at 90" to the incident beam and the other at
approximately 135~ to it.

In arrangements A and B the muscle specimen was cut to size and totally
enclosed without access to the air. It rapidly became completely anaerobic
as indicated by changes in the absorption spectrum of the muscle myoglobin
which could be conveniently monitored by measurements with 565 nm and 585 nm
LEDs (manuscript in preparation).

sarcomere length was measured by optical diffraction using a He Ne laser at
633 nm.

Results and discussion

Fig. 2 records the changes in light transmission measured in apparatus of
type A when a saBple of beef sternomandibularis muscle was allowed to pass
into rigor at 22°C.

At each of the three measuring wavelengths a decrease in Tight transmission,
with similar kinetics, 15 associated with rigor onset. The muscle tissue is
more opague at shorter wavelengths and this is attributable partly to

increased 1ight scatter at the shorter wavelength (6). At 565 nm, however,
a substantial part of the attenuation is due to absorption by haem pigments -
mainly myoglobin (the myoglobin concentration in this sample is approximately
2.8 mM). At 655 nm, however, myoglobin absorption is small (7% of the value
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fop o
ang 39 4 ?’:59‘1 by rigor onset. Experiments were performed as described
4y 0sgq % €asurements at 90°) but the sarcomere length was varied. Open

M sircnm Ols describe results from two different fibres, diameters (at
€re length) 68 4m O and 74 um @ respectively.

Figure 1

4
e R R
0
20~
g lo_ /—Mm
c
o
40
£ 30
c
o
=
20~ 940nm
ok
0
L 1 | | | | |

1
4 8 12 {1 s el I
Time postmortem (h)

Figure 2
2
51
>
Ly
.“5‘
ELH
2 4
g
32
&
0 1 ] | t 1 1 |
Ry 4 8 .12 16 20 -2 28
Time postmortem (h)
Figure 3
22
ol g
20 g¢ tungy
Scatter
ratio 18 o o
rigor
(requ) 16~ .
1410" ®
%o
12~
1.0 1 ] 1 1 1 1 1 ]
20 22 24 .26 28 30 32 34..36
Sarcomere length (um)
Figure 4
a b a b 5
orce
P I T

" S0 I e A o

Stiffness
e
mm 0

2 Scatter
135°
L M.
0
B Fe L ]
5 min
Figure 5

105




