4 - 20 STUDIES OF SOME CHEMICAL AND PHYSICAL PROPERTIES OF MUTTON AND BUFFALO'S MEAT

Khairy M. Ibrahim¹, Amani A. El-Dashlouty²

¹Faculty of Agriculture at Moshtouhor, Animal Prod. Dept. Zagazig University, Banha branch, Egypt

²Meat and Fish Tech. Res. Dept., Agric. Res. Center, Egypt

Many authors stated that the chemical and physical properties of meat are largely influenced by various ante and post-mortem factors, among which species and age were reported (Hedrick et al., 1957; Wilson, 1960; Sokolov, 1965; Ragab et al. 1966; Lawrie, 1974).

These authors also mentioned that the different cuts of meat showed variable chemical and physical characteristics.

The present work deals with some of the chemical and physical factors which are of great significance to the lamb quality. The effect of age on the meat quality was studied using two cuts of lamb carcasses (sir loin and rump cuts). The same cuts obtained from buffalo males of 18 months age were also analyzed. The fect of cold-storage and frozen storage on the physical properties of meat was also studied.

The full paper is after this page!

STUDIES FO SOME CHEMICAL AND PHYSICAL PROPERTIES OF MUTTOR AND BUFFALO'S MEAT

Khairy M. Ibrahim - Faculty of Agriculture at Moshtouhor, Animal Prod. Dept., Zagazig Univ. Banha branch., Egypt

Ameni A. El-Dashlouty - Neat and Fish Tech. Res. Dept., Agric. Res. Conter, Egypt

A number of 9 Ossimi male lambs and 3 buffalo male calves were used in this study. Lambs and buffalo calves were weahed at 4 months of age. Them fattening was carried out on a pelleted ration composed of cotton seed meal, 65%; wheat bran , 12%; rice bran , 20%; calcium carbonate , 2%; and sodium chloride; 1%. The daily intake for lambs and calves from weaning to slaughtering , the energy and protein content of each ingredient were as reported in the Ministry of Agriculture Bull. (1968). This experiment was carried out at the Farm of the Faculty of Agriculture Sciences at Moshtouhor.

The lambs were slaughtered at 8,10 and 12 months of ago (3 lambs at each age), while three calves were slaughtered at 18 months of age. Jointing of lamb and buffalo calves carcasses was done in the same manner given by Darwich (1963) for buffaloes, to obtain similar cuts. After about 1½ hours of slaughter samples were taken from sir lion and rump cuts (fresh).

The moisture, crude protein, fat and ash contents were determined using the methods given by the A.O.A.C. (1970). For calculating the energy value total summation of moisture, protein, fat, and ash content was subtracted from 100; to obtain the carbohydrates content. Protein and carbohydrates contents (%) were multiplied by four, while the fat content (%) was multiplied by nine. Energy value was presented as cal/100 gm.

The water holding capacity (VHC) and plasticity were measured following the Grau and Humm method (1957) as modified by Volvinskaia and Merkoolova (1958).

Protein water coefficient (PWC = % Protein)
and protein water fat coefficient (PWFC % Protein)

Water + % fat
were calculated. According to Tsuladze (1972) the tenderness
of muscle tissues increased with decreasing of PWC and PWFC
values.

The physical properties of meat were also studied after one and six days of cold storage at 4° c and after one and two months of frozen storage at -10° c.

The results for all determinations are presented as mean values of three animals .

RESUTUS AND DISCUSSION

A) Chemical composition

a) Effect of cut:-

position of lambs and buffalo calves. It could be noticed that regardless the species and age, rump cut showed lower. moisture content and higher dry matter content than the sir loin cut, which may be ascribed to the higher fat content in the first case (Table 1). Protein content was relatively lower for sir loin than the rump. The ash as well as the moisture contents were proportionally related to the protein content, while were inversley related to the fat content. Similar findings were reported by Jokolov et al. (1960). Due to the higher fat and protein content in the rump the chargy value was higher as compared with that of hir holm cut, The carbohydrates content was always lower in the rump cut.

Table 1 The chemical composition of sir lain and rump of lambs and buffalo calves .

		Lam	b mea	t		-,	Buffalom	at
Contents	8 mth. o	f age	10 mth.	of age	12 mth.	. of പളാ	18 edh . af	age
	Sir loin	Rump	Sir kin	Rump	Sir loin	Rump	Sir loin	Rump
Maisture gm.% Retartio	-	61 . 20 -	62.30 98.58	60.40 98.69	61 •70 97•63	97•55	58 . 60	56,30
Dry 3m.% matter Retention	•	38.80 -	37.70 102.45	39 . 60 102 . 06	78.30 104.08	40.30 103.87	41.40 	43.70 -
Protein gm.% Retentio		19.20 -	17.00 94.44	18.60 96.88	16.60 92.22	18.00 %・万	17.70 	13.40 -
Fat gm.% Retention		18.30 -	19 .2 0 109 . 71	19.80 108.20	20. 30 116 . 00	20 . 90 114 . 21	22. AO	24.00
Ash gm.% Retentio		1.00	0.90 100.00	0.90 90.00	0.80 8 3. 89	0.90 100.00	0 .9 0	1.00
Carbohy- gm.% drates Retention		0.30	0.60 150.00	0.30 100.00	0.60 150.00	0.50 166.67		
Energy gm. % value	231.1	242.70 -	243.20 105.24	253.80° 104.57	251.50 108.83	2621.10 107.99	274.40	ু290 . 8≀ -

Table 2; The chemical composition of the rump as percentage of that for sir loin cut.

Contents %		Buffaloe			
	8thm.of ag	ge #Omth.of	age	12mth.of age	
Moisture	96.84	96 . 9 5	- 0	96.76	
Dry matter	105.44	105.04	8	105.22	96.08
Protein	106.67	109.41		108.43	105.56
Fat	104.57	103.13		102.96	103.96
A s h	111.11	00.00		112.50	107.14
Carbohydrates	75.00	50.00		83.33	125.00
Energy value	105.02	104.36		104.22	60.00 105.98

From table 2, it could be observed that the differences in the chemical composition between the two studied cuts, however existed, were not high, except for ash and carbohydrates contents; being 5.92-4.05%, 5.94-5.56%, 3.96-6.67%, 2.97-7.14%, 0.00-25%, 16.67-50% and 4.22-5.98% for moisture, dry matter, protein, fat, ash, carbohydrates contents and energy value respectively.

b) Effect of Species

The table 1, it could be noticed that the rambs ment showed migher moisture content and least process, fat and caloricity, specially when lambs of 42 months of age were compared with buffaloes, of 18 months of age. According to Lokolov et al., (1960), mutton retained higher fat content and caloricity; lower moisture and protein contents. The lower fat content and energy value (Table 1) found for lamb ment (compared to buffaloes) may be attributed to several factors such as the possible intense deposition of fat in the tail.

From table 2, it could be noticed that differences in the protein, fat and ash content as well as in the energy value between the rump and the sir loin cuts were relatively more pronounced for buffaloes meat than the lamb meat. Differences between the two cuts with regard to moisture, dry matter and carbohydrates were similar in lambs and buffaloes meat.

c) Effect of age:

With advancin; of age the moisture, protein and ash contants decreased while the fat content increased (Table 1). Similar trends of changes due to age were reported by Lawric (1974).

From table 2, it could be observed that differences between the two studied cuts were not affected by age except for fat and energy value, where such differences should some decrease with advancing of age. This indicated that the decosition of fat with increasing of age may be relatively more pronounced in sir loin as compared with rump cut.

B) Physical properties

a) water holding capacity:-

Data presented in table 3, show the average water holding capacity of the lambs and buffaloes meat.

1- Effect of cut

From talbe 3, it could be noticed that, regardless to the age, species or storage conditions, the water holding capacity (WHC) was better for sir loin than the rump cut in as much as the area of exudative water by pressing (in cm was smaller in the first case than the latter one. This may be attributed to more water binding ability of proteins and lower connective tissue content in the sir loin than the rump cut (Lawrie, 1974).

Table 3, : The water holding capacity (in cm2) of lambs and buffaloes meat as affected by storage conditions.

Water holding	canacity	La	mbs			Buffaloes	
water nording		8mth.of	age	12mth.of	age	18mth.of	age
51		Sir lain	Rump	Sir loın	Rump	Sir lo in	Rump
Fresh samples	C m ² Retention	2.2 6100.00		4.1 100.00		4.5	5•7· 100.00
24 hours at 4°c	C m ² Retention%	•	- 35	6 . 5 158 . 5+	9.4 177.36	6.6 146 .7 7	8.8 154.39
6 days at	C m ² Retention%	-	100	5•9 · 143•90	8•3 156•60	7.22 160.44	9.6 163.42
1 month at	C m ² Retention%	-	5.6 160.00	6.9 168.29	9.4 177.36	7 • 8 173 • 33	10.2 178.95
2 months at -10°c	c m ² . Retention%			7•6 185•37	10.1 190.57	8.5 188.89	11.3 198.25

From table 4, it could be noticed that the fresh sirloin cut showed better WHC than the rump cut by 26: 67-59.09%.

Table 4: The water holding capacity of rump cut as percentage of that for the sir loin cut.

Samples	3	() ()	2 1	Fresh	1 day	6 days	1 mth. at-10%	2 mth.	
Lambs	8 12	mth.of	ಚ್ ರ ಚಿತ್ರಂ	159.09 129.27					-
Paffulown	18	Bath.of	a <u>r</u> e	126.67	133.33	132.96	130.77	132.94	

2- Effect of species:

From table 3, it could be noticed that the WHC was better for lambs meat than the buffaloes meat, which may be at ributed to the lower connective tissue content in the former case than the latter one.

It could be aslo noticed that the differences in the WHC between the sir loin and rumps cuts were less marked for buffaloes than mutton regardless of age (Table 4). This may be due to the higher fat content in buffaloes meat than the lambs meat (Table 1). Lawrie (1974) reported that the higher WHC in pork than beef may be attributed to the higher fat content of pork which may loosen up the microstructure of pork, thus allowing more water to be entrained.

3- Effect of age :

With advancing of age the WHO or lumbs heat decreased (Poble 3). This decrease may be appributed to the lower binding ability of proteins and higher connective tissue content and firmness with increasing of age (Boxolov, 1935).

As the age of unitals increased the differences in the WHC between the sir loin and rump cuts decreased (Table 5). Hence the deterioration of the JHC with age was more pronounced for the sir loin cut than the rump one. This may be attributed to the possible more deterioration of protein binding ability of the sir loin cut with increasing of age when compared with the rump one.

Table 5: The WHC of the lambs meat after 12 months of age as percentage of the WHC at 8 months

Storage	0	1 day at 4°c	6 da yş at 4 ⁰ c	1 mth.at -10°c	6 inth.at
Sir loin	186.36	167.65	165.52	164.71	173.68
Rump	151.43	144.62	140.68	136.23	132.90

4- Effect of storage :-

During cold-storage for 1 day the WHC decreased (Table) due to the attack of rigor mortis which is usually accompanied by the decrease of PH towards the isoelectric point of proteins and the association of myosin with actin (Lawrie, 1974). The WHC increased after 6 days of cold-storage (Table 3) due to aging which is accompanied by dissociation of actomyosin and increase of pH (Sokolov, 1965). At the end of cold-storage (6 days) the WHC did not reach the original level characterizing the frish meat (Table 3) because of the incomplete dissociation of actomyosin and relatively low pH value of the tissues (Sokolov, 1965).

The WHC changes, after one day storage, were less marked for buffaloes meat than the lambs meat, because the top of rigor mortis was reached in the first case, being one day as found by El-Dashlouty et al., (1967), while the top of rigor mortis for buffaloes meat was recorded after three days of cold-storage (El-Ashri and El-Dashlouty, 1970). The imporvement of the WHC after six days of cold-storage was also more rapid for lambs than buffaloes meat which indicated that the aging of mutton is more rapid than for buffaloes meat (El-Dashlouty et al, 1967 and El-Ashri and El-Dashlouty, 1970).

The higher values of WHC for buffalo meat after six days of cold-storage as compared with one day storage indicated that after one day storage still more deterioration of WHC occured. Then possibly after three days storage the improvement begun.

During frozen storage the WHC was deteriorated.

This could be attributed to the protein denaturation by freezing (Lawrie, 1974). The decrease of water binding ability was more pronounced for buffaloes meat than the lambs meat, indicating the possible more denaturation of proteins in the former case when compared with the latter one. Buffaloes meat contained higher fut content than the lambs meat. During frozen storage the exidation and products of lipids renders the muscle protein insoluble which reduced the WHC of meat.

On storage the effect of age, species and cut was noticed as for the fresh meat (Tables 3,4 and 5).

B - Plasticity:

Plasticity was determined as indication for the meat tenderness. The increase of the area of pressed meat (in cm²) indicates the more tender meat (Grpau and Hamm, 1957).

1- Effect of cut:

Data in table 6, show the average plasticity (in ${\rm cm}^2$) for the lambs and buffaloes meat.

From table 1, it could be noticed that the sirloin cut was more tender than the rump cut regardless the age, species and conditions of storage.

Data in table 7, show that the differences between the fresh sir loin and rump cuts were 25.81-26.67 %. The more tenderness recorded for the sirloin cut, as compared with the rump may be attributed to the lower connective tissue contents and firmness (Sokolov, 1965) as well as the better water holding capacity (Table 3).

100000000000000000000000000000000000000		La	m b	TO REI HEND		Buffalo	oes
Plasticity	(588)	8 mth.ofag		ge 12mth.og age		18 mth	of age
eraningster in	OF BUILT	Sir loin	Rump	Sir loin	Rump	Sir loin	Rump
	2	to de play.	W Brie	and HE	ud ned		
Fresh sample	c m ²	3.6	3.0	3.1	2.3	2.7	2.2
- ' :	Retention %	100.0	100.0	100.0	100.0	100.0	100.0
- 1	LINETEGE &	grant follows:	H-12				
1 day at48	cM ²	2.7	2.1	2.2	1.6	2.1	1.7
The street of the	Retention?	6 75.0	70.0	70.97	69.57	77.78	77.27
×			- 8	7			
6 days at 4%	cm ²	3.2	2.5	2.6	1.8	2,0	1.6
of the molecule.	Retention%	88.89	83.33	83.87	78.26	74.07	72.73
1 month at 408	cm ²	3.0	2'.4	2.4	1.7	1.9	1.5
E.	Retention%	83.33	80.00	77.42	73.91	70.37	6 3 . 18
2 month at -108	cm ²	2.5	2.0	2.0	1.4	1.6	1.3
	Retention %	69.44	66.67	64.52	60.87	59.26	59.09

2- Effect of species:

It was found that the buffaloes meat was less tender than the lambs meat (Table6). Ragab et al, (1966) reported that the buffaloes meat is generally tough and course when compared with cow's meat. This may be possibly due to larger amounts of connenctive tissues and more thick muscle fibres.

Table 7: The plasticity of rump as percentage of that for sir loin.

1 I W	Ţ.				1 day	6 days	1 mth.	2 mth.
Samples	10/40	, w 1		Fresh	at 4 ⁰ c.	at 4 ⁰ c.	at -40°c.	at -10 ⁰ c.
Lambs	: 8	mth.	of age	83.73	77.77	78.13	80:00	80.00
il year you	12	mth.	of age	74.19	72.73	69.23	70.83	70.00
Buffaloe	s:18	mth.	of age	81.48	80.95	80.00	78.95	81.25

From table 7, it could be concluded that the differences in tenderness between the sir loin and rump cuts (fresh samples) were higher for buffaloes (18 months of age) than lambs (12 months of age). The contrary may be found if the buffaloes meat was compared with lambs meat at 8 months of age. This may be due to complex effects of moisture, fat, WHC and connective tissue content and firmness.

3- Effect of age:

With advancing of age the meat tenderness decrereased (Table 6 and 8), which may be attributed to the increase of muscle fiber diameters and connective tissue content and firmness (Lawrie, 1974) as well as the deterioration of the WHC(Table 3)

From tables 7 and 8, it could be noticed that with advancing of age the differences between the tenderness of the sir loin and rump cuts increased, which may be due to the possible increase of the differences in the connective tissues.

Table 8: The plasticity of the lamb meat at 12 months of age as percentage of plasticity at 8 months.

Storage	0	1 day at	6 days at	1 month a	t 2 months at -10°c
Sir loin	86,11	81.25	81.25	80.00	80:00
Rump	76.67	76.19	72.00	70.83	70.00

4- Effect of storage:

By cold-storage for one day, the meat tenderness decreased due to the attack of rigor mortis, which may be ascribed to the muscle contraction, association of myosin with actin, the decrease of water binding ability as well as the increase of

connective tissue firmness (Abd B1-Salam, 1978). After one day storage at 4°c the decrease of tenderness was more pronounced for lambs than buffaloes meat indicating the top of rigor mortis in the former case while the meat was still fdr away from full rigor in the latter case. The decrease of plasticity values after six days of cold-storage of buffaloes meat as compared with one day storage, indicates the possible more decrease of tenderness after three days storage i.e. on reaching the top of rigor mortis. After 6 days storage lamb meat showed marked improvement of tenderness due to aging, while the aging stage was still not reached in the case of buffalo meat.

By increasing of frozen-storage time, the tenderness of meat continuously decreased, which may be attributed to protein denataration and decrease of the WHC (Table 3). The decrease of the plasticity was more pronounced during frozen storage for buffaloes meat than lambs meat (Table 6) indicating the more WHC deterioration and the possible more changes of proteins in the formar case.

From tables 6,7 and 8 it could be noticed that the differences between the sir loin and rump cuts were still observed during storage. It may be also concluded that the rump cut showed more decrease of tenderness after one day storage at 4°c as well as during frozen storage and less pronounced improvement on aging when compaded with the sirloin cut. Such results paralled the rate of WHC changes laring atomics (Wable 3 and6).

C. Texture indices

The texfure indices were suggested by Touladze (1372) as an indication to the tenderness of different nuscles and species of fish. The PWC and PWFC decrease as the tenderness of meat increases.

The values of the PWC and PWFC for fresh neat are given in table $\bf 9$.

Table 9: The PW and PWF coefficients for lambs and and Suffaloes meat.

	L a: m	b s	Buffaloes
Coefficients	8 mth. of age	12mth. of age	18 mth. of age
= 1, = 1/1 m	Sirlion Rump	Sirloin Rump	Sirloin Rump
PWC	0.2848 0.3138	0.2690 0.3015	0.3021 0.3268
PWFC	0.2231 0.2415	0.2024 0.2233	0.2185 0.2291

From tables 6 and 9, it could be noticed that the texture indices were valid as indications to the tenderness of different species and muscles but failed to indicate the changes of texture due to age. Both PWC and PWFC values were lower for lambs meat than the buffaloes meat and were lower for the rump tissues when compared with the sirloin, indicating that lambs meat and sir loin samples were more tender than the rump and buffaloes samples. Such results were in parallel with the values of plasticity (Table 6.).

As the age of animals increased the meat tenderness decreased as was found from plasticity values (Table 6) . Meanwhile PWC and PWFC gave unexpected results in as much as the values of these texture indices decreased with increasing of age (Table 9). The unexpected results could be explained on the basis that by increasing of age the rate of decrease in the protein content was marked (from 100% to 92.22% and 93.75%, i.e. by 7.78 and 6.25% for sirloin and rump cuts respectively) as compared with the rate of decrease in moisture content (from 100% to 97.63% and 97.55%, i.e . by 2.37 and 2.45% for sirloin and rump cuts respectively.) So the values of the PWC decreased with age. Similarly on calculating the PWFC the fat content increased with advancing of age wich reduced the PWFC values (instead of their increase with the decrease of meat tenderness) . There by when following the chages of tenderness with advancing of age the PWC and PWBC values should decrease which is the case in table 9. When the inverse values were calculated i •e. WPC and WFPC instead of PWC and PWFC (Table 10) the values of the texture indices increased with age, ise. with decreasing of plasticity (Table 6) and tenderness .

Table 10: The WPC and WFPC of lambs and buffaloes meat

بالرواطات	L	A m	b s		Buffaloe	8
Coefficients	8 mth. of	age	12 mth. of	age	18 mth. of	
	Sirloin	Rump	Sirloin	Rump	Sirloin	Rum
WPC	3.51	3.19	3 .7 2	3.32	3.31	3.0
WFPC	4.48	4.14	4.94	4.48	4.58	4.3

But these inverse coefficients, in their turn, did not reflect the effect of cut or species on the meat tenderness.

REFERENDES

- Abd El-Salam, M.A (1978) Chemical and Technological Studies on Some Egyptian Meats. H. Sc. Thesis, Faculty of Agriculture, Ain Shams University.
- A. O. A. C. (1970) Official methods of analysis of the
 Association of Official Agricultural Chémists,
 Washington, D. C
- Darwish, M. Y. H. (1963) The production of mout. Dar Electric States (In Arabic).
- El-Ashri, M. A. and El-Dashlouty, M. S. (1970) Studies of some post-mortem changes of buffuloe meat.

 Proceedings of the 16th European Meeting of Meat.

 Research Workers, Volume II, P. 16.
- El-Dashlouty, M. S., El-Ashri, H. A. and Bessouki, T. M. (1967) Effect of adrinaline injection on the physical and chemical changes of matton.

 Agric. Res. Rev., 45,3: 100-109.
- Grau , R. Und Hamm, F. (1957) Uber das Wasserbindungsærmogen des saugetiernuskels, II - Uber die Bestimmung der Wasserbindung des Muskels, Zeitschrift für Lebensmittel - Untersuchung und Forschung, 105, 6: 446-460.
- Hedrick, H. B., Brady, D. Efand Turner, C. W. (1957)

 The effect of antermortem stress on postnortem

 beef carcass characteristics. American Heat

 Institute. Proceedings of the 9th Research

 Conference., 9.

- Lawrie, R. A. (1974) Meat Science. Second Edition, Oxford, New York, Toronto, Sydny, Braunschweig.
- Minstry of Agriculture, Egypt (1968)

 Animals and Poultry Nutrition, Bull. No. 3.
- Ragab, M. T., Darwish, M. Y. H. and Malek, A. G. A. (1966)

 Meat production from Egyptian buffaloes.

 II Physical and chemical characteristics of buffaloe meat. J. Anim. Prod. U. A. R., 6, 1:31-50.
 - Sokolov, A. A. (1965) Physico-chemical and biochemical basis of meat products technology. Food industry Pub., Hoscow.
 - Sokolov, A. A., Pavlov, D. V., Bolshakov, A. S., Joravskáia,
 N. K., Shopenski, A. P. and Diflop, A. P. (1960).
 Technology of meat and meat products, Food
 Industry Pub.
 - Tsuladse, E. A., (1972) The relationship between the tenderness of fish mest and its protein water and protein water fat coefficients. Fish Industry, 48, 7:68-69.
 - Volovinskaia, V. P. and Merkoolova, T. K. (1958) Methods

 for determination of ment wave holding emocity.

 Office of techical information. All Union
 Scientific Research Institute of Most Industry. E
 Bulletin No 21.
- Wilson, G. D. (1960) Factors influencing quality of fresh meats, the science of meat and meat products.

 American Meat Institute Foundation. W.H.

 Freeman and Company, San Francisco and London.