THE TECHNOLOGICAL AND MICRO-BIOLOGICAL AND CACL2 USE AT COMMINUTED MEAT PRO DUCTS MANUFACTURE N.M.Lipatov, P.K.Polyschuk, A.A.Schutov, P.K.Polyschuk, A.A.Scherbinin, V.N.Krestovsand A.B.Lisytsyn** *The Moscow Technological In-Stituto Scow Technological Institute of Meat & Dairy Industries, Moscow, USSR Mand Doci Tratitute, Mosand Designing Institute, Mos-INTRODUCTION In soviet and foreign sources of technico-scientific infor-nation the effect of Cations ties of meat raw material is meaching in a contradictory described in a contradictory nammer. The shortage of concrete data necessary for es-tablishment of the interrelation between the quantity of exogenous Cat and its influen-Ce on such important characteristics as cooking loss, broth, Protein and fat loss at diffe-ponents of the main components of comminuted meat products of comminuted most of their boots in the process of did a their heat-treatment, did not clear out wether it is worth using ionized Cat, namely Cat such?, during manufacture of Products. MATERIALS AND METHODS To solve this problem research Was conditated on the so-called Was conducted on the so-called Mas conducted on the so-con-model" comminuted meat sys-tems which after raw material Srinding with 10% Brinding and mixing with 10% brine were introduced into and heat-treated to 71 + 1°C centre temperature. RESULTS Experimental data, characterising the common chemical com-

an

55

19

p'

10

18

18

15

4,

position of the initial ground meat systems including comminuted beef muscle tissue, and also influence on their technological properties of CaClo, added in the process of mixing meat with brine, are presented in Table 1.

From the data of Table 1 it follows that adding of 0.1% and 0.2% of CaCl₂ into model systems causes lowering of broth and increase of the "solid part" mass share as com-pared with the heat-treated model system, salted without CaCl₂. Increase of CaCl₂ con-centration to 0.3% influences negatively the technological properties of comminuted meat during its heat-treatment. Taking into account that the total cooking loss of the model ground meat comprises, besides broth, moisture, evaporated in the process of heat treatment, CaCl_ concentration equal to 0.1% should be considered the most effective for the minimal fat and protein separation into broth and for the maximal preservations of the ground meat mass. Results of the analogical research into model systems comprising comminuted muscle and fat pork tissues, are present-ed in Table 2. Analysis of the data listed in this table shows that concentration equal to 0.1% on the protein equivalent (i.e.0.074%) by weight of the model systems, consisting of ground beefm ensures minimal quantity of separable broth as well as minimal losses of its nutritive components - protein and fat. The interest to the study of possible CaCl bacteriostatic effect arose during the comparison of microbiological ana-lysis of different types of cooked sausages, manufactured with blood plasma, when it be-came clear that sausages, con-

Table 1.

Concent- ration	-'Degree ' 'of com-'	Mass shares,%			' Yield	a construction of the second s			ss of the'	
	i minution		protein '	fat	solid part	broth	fat 'pro- 'm		'moistu-'	matter
0.0				and an a global provident and a second s	80.5	19.5	1.5	destination of the state of	19.56	191.4
0.1	2.5	72.37 ±	21.08 ±	4.45 ±	83.0	17.0	0.6	1.7	18.52	195.2
0.2		0.95	0.69	0.47	81.2	18.8	0.9	1.7	20.13	189.4
0.3		1998 (S. 1997)			79.5	20.5	1.12	1.9	21.51	184.38
0.0					80.1	19.9	1.9	2.1	19.77	189.6
0.1	5.0	72.30 ± 0.89	21.48 ± 0.73	4.12 ⁺ 0.44	82.4	17.6	0.9	1.5	19.06	192.2
0.2					80.2	19.8	1.2	1.6	20.99	185.2
0.3					89.0	21.0	1.4	1.7	21.96	181.7

Table 2.

Concent ration of CaCl	- Degre fof co minuti	m-'moisture	s shares, %	fat		ld, % 'broth	'the i	nitia %	moistu-	dry ma	'FHC*, % e'to the at'fatless 'dry re- 'sidue
0.0					76.3	23.7	7.1	1.9	23.8	56.8	123.1
0.1	3	51.4 ± 0.54	15•71 ± 0•54	30 ± 1	78.7	21.3	6.2	1.4	22.4	59.7	127.9
0.2					77.1	22.9	6.5	1.6	23.3	57.8	126.3
0.3					76.8	23.2	6.9	1.8	23.6	57.2	124.2
0.0					75.7	24.3	8.2	1.7	24.3	54.9	115.5
0.1	6	51.13 ± 0.99	15.8 ± 0.61	30 ± 1	78.2	21.8	7.4	1.2	22.9	57.8	119.8
0.2					76.7	23.3	7.7	1.4	23.3	56.9	118.2
0.3					76.1	23.9	7.9	1.6	23.9	55.7	117.1

* FHC - fat-holding capacity

taining calcium chloride as a coagulant, were characterized by the lower microbial load as compared to sausages, manufactured without CaCl₂. With this aim 5 types of model protein-containing mixtures were examined, salted with 2.4% NaCl: 1 - blood plasma mixed with beef trim; 2 - blood plasma mixed with beef trim and the isolate of cottonseed protein; 3 - blood plasma mixed with beef trim and sodium caseinate; 4 - blood plasma mixed with beef trim and diafiltrational protein concentrate of skimmed milk; 5 blood plasma mixed with beef trim and micellium mushroom mass.

Each type of the model mixture was prepared in two variants. The control variant was prepared without calcium chloride. The test variant - with the addition of 0.1% CaCl₂ in the process of components^{mixing}. After pre-treatment the model mixtures were placed into cans No.3, closed with lids and heat-treated in a cannery reto-rt of the "Rotor Zwerg" compa-ny until 71 - 1°C centre tem-perature. Then the samples we-re thermostated at this temperature during 5 minutes and cooled to 18 - 1°c centre tem-perature. After 72h storage at room temperature the samples were taken for the microbiological analysis. Results of these analysis, presented in Table 3, show that for all system types under investigation, variants, prepared with 0.1% CaCl, are characterized, on the average, by the 1.69 times less bacterial load as compared with the control ones. Another stage of CaCl, influence of the microbiological characteristics of food systems was devoted to the evaluation of its effect on the microor-ganisms of one of typical spe-cies of bacteria of the group

346

In Table 4 experimental results of the CaCl, influence on mean E.coli growth rate in the mean peptone again (MDA) peptone agar (MPA) are present ed. During these experiments 2 types of E.coli suspensions Were proposed were prepared with the equal concentrations of cells 10°/ml: 1 - in meat water; without calcium chloride addition With 2 - in meat water, 1% addition of 0.1% Both variants of suspensions before inoculation into MPA were stored during 24h at root temperature and at 6°C. After that, inoculation into MPA was made without could (cont was made without CaCl, (control) and into MPA, containing 0.1% CaCles Culti, to of 0.1% CaCl2. Cultivation of microorganisms was conducted at 30°C during 72 hours sults of these studies are Analysis of the data presented in the Table indiata presented in the Table indicates that in case of holding E. coli bat teria suspensions containing and not containing of Call and not containing 0.1% Call at 19-20°C and at cultivation of these succession of these suspensions inocu lations in MPA without Call the amount of colonies, group in the suspension inoculation prepared with 0 are almost prepared with 0.1%CaCl2 of twice exceeds the amount of sices, grown in the suppli colonies, grown in the suspen addition. During cultivation of the inoculated suspension of the above-mentioned type of the above-mentioned suspense in the MPA, containing 0.1% CaCl, the growth rate of the microorganisms in the Drocess microorganisms in the process of their 72h and the process of their 72h cultivation at 30°C slows docutivation 30°C slows down by 2-3 MPA At the inoculation into MPA without CaCl without CaCl, of suspension containing or not containing 0.1% CaCl, and held at 6°C during 24 ms. the mount of during 24 firs, the amount inor colonies growth in both prac lations appeared to be Prace

Si

1

C.

SC

3

ć

4

Э	

ts

せせ

\$

tD

1

,

Table 3.

800	_					
1 1	No. of Concession, Name of		Microorganisms' type	E.coli	Provulgar	Salmonel.
	2.01	•103	Bac. mesentericus; mycoides	-	-	-
5	1.15	•103	Bac. mesentericus; mycoides Bac. mesentericus;	-	-	<u>-</u>
	-	10	Dace meserroerrows,	-	-	-
3	1.65	•103	mycoldes; Staph. Saprophitum Bac. mesentericus; mycoides; Staph. Saprophitum	_	_	_
Stors 2	1.42	•103	Bac. mesentericus; mycoides; subtilis	-	-	-
4			Bac. mesentericus; mycoides; subtilis		_	-
4 + Car	1.85	•103	Bac. mesentericus; mycoides; subtilis Staph.Saprophitum	-	-	-
5	1.17 °10 ³		mycoides; subtilis Staph.Saprophitum Bac. mesentericus; mycoides; subtilis Staph. Saprophitum	· ·	_	_
	E. 01	11-5				-
tical	1.52	•103	Bac. mesentericus; mycoides; subtilis Bac. mesentericus; mycoides; subtilis	5 –	-	-
mycoides; subtilis						sesses pro- atic effect E.coli type. tests was ol effect of unt of CaCl ₂ e lowering eria at mo- ent regimes. uspensions (37 x 10 ² culated into ne agar, c glass

Table 4.

oth Barbarbo

	Microbial count after 72 hrs cultivation at 30°C
	in MPA without CaCl ₂ in MPA, containing (control) 0.1% CaCl ₂
I.Preliminary holding at room temperature during 24 hrs	e e
a. without CaCl2	94.4 x 10 ⁷ /ml Large, typical of the Typical of the E. surface and inner co- lonies 100125 29.2 x 10 ⁷ /ml Typical of the E. bacteria type bacteria type ce and inner co- ce and inner co- colonies is signific colonies is signific cantly lower as compared to the variant pared to the variant MPA without Cacl2
b. with 0.1% CaCl ₂ addition	dition 54.8 x 10 ⁷ /ml 26.8 x 10 ⁷ /ml
II. Preliminary hold- ing at 6°C during 24 hrs	
a. without CaCl2	176 x 10 ⁵ /ml Typical of the E.coli Typical of the E.coli bacteria type surface and inner colonies mostly of middle si- ze 134 x 10 ⁵ /ml bacteria type surface and inner colonies mely small sizes
b. with 0.1% CaCl ₂ addition	$174 \ge 10^{5}/\text{ml}$ $102 \ge 10^{5}/\text{ml}$
out CaCl_ addition(con and with 0.1% of CaCl. inoculation the flasks closed with sterile co- placed into "swinging" bath to ensure iniform their contents heating rature control with the cacy of = 0.5°C was do the help of a high-ser connected to the therm which was fixed by a sub- adapter in the center Clasks containing sust	2. After S were orks and " water nity of 5. Tempe- he accu- one with hsitive kit bocouple, Special of the As temperature reached in support 62°C and 64°C flasks Tith pensions inoculated in MPA, pensions inoculated in MPA, taining and not containing taining and not containing o.1% CaCl, were taken out water bath. Selected flasks water bath. Selected flasks and taining and not containing taining and not containing taining and not containing water bath. Selected flasks taining and taining and

Experimental results inumine that at 60°C complete elakes tion of E.coli already 0.1% place in MPA, containing

flasks containing suspensions, inoculated intp MPA, and not involved in further microbio-

CaCl After 24, 48 and 72 hours of thermostating at 30°C this variant of the meat-pepto he agar remained sterile. The same sterilizing effect with the sterilizing in With E. coli inoculations into PA, not containing CaCl₂, was tenched only at the heating temperature of 64°C. CONCLUSIONS Addition of calcium chloride of o ground meat at the level of 0 ground meat at the raw Nater: by weight of the raw Material for systems composed of high-protein components (beer as we (beer muscle tissue) as well As for systems where mass sha-The for systems where mass and of of fat exceeds mass share cant protein, ensures signifi-and positive effect on fatand Positive effect on the the water-holding capacity of the ground meat. This makes possible to becom-Rend addition of such amount of CaCl during comminuted Meat products manufacture (cooked sausages, cans, semi-prepared foods) in order to increase foods) in order to increase foods) in order us losses of the main macronutritive substances, containing in the substances, containing of the initial meat components Calcium character at the level Calcium chloride at the level of 0.1% by weight of the food products by weight of the food products, possesses bacterio-microorganians of Bac. mesentericus: Dides: Bac. tericus; Bac. mycoides; Bac. Subtilis; Bac. mycoides; Bac. E. Col; Staph. Saprophitum; tance and lowers thermoresistance of E. coli bacteria during heat treatment.

1