A NEW TYPE OF STARTER CULTURE FOR FERMENTED SAUSAGES

MARIJA SUTIĆ and RUEICA MILOVANOVIC

Department of Microbiology,
 and of Belgrade, 11080 Zemun and Meat Factory INEX "Crvena Yugosla, Kragujevac,

INTRODUCTION
Results of investigations carried out to date have shown that an own starter culture for fermented meat products and parti${ }^{c} l^{2}$ arly dry sausages, featuring exellent characteristics has een obtained. The new starter ${ }^{\text {Cul }}$ ture combination includes noctobacillus casei subsp.rham(Milovand Micrococcus $\frac{\text { luteus }}{\text { to }}$ to be able to propose this own starter culture to sausage propare it was necessary to comWell its traits with some other starter ${ }^{\text {E }}$ Co. (fulture of the R. Müller rope. (FR Germany) used in EuPurposes employed for these
MATERIAL AND METHODS Dry sausages were produced in
${ }^{\text {O}} \mathrm{O}$ r ${ }^{2}$ vezdar variants in the "Crvena of Kragujevac canning
plant. 100 kgs of filling was used per variant:
I. with $1 \%$ of own starter culture and 250 g of Tari S 77 ;
ll. only with the starter culture;
lll.with Müller"s starter culture and
IV. control variant - without any cultures, but with 500 g of Tari S 77.

The working L. casei subsp. rhamnosus and $\underline{M}$. luteus culture was multiplied on pasteurized minced beef meat with the addition of 1 \% saccharose (Joksimović et al. 1978). Müller*s starter culture

- duploferment 66 a combination
S. carnosus M lil and L. plantarum L 74 in liophilized form was used as such. Experiments were carried out with three replication. Samples for analysis were taken prior to filling, following drying and on the 7 th, $12 t h$ and 21 st day following preparation. The dynamics of the total bacterial count was monitored on yeast dextrose agar (YDA), lactobacilii count on Rogosa (1951) substrate, streptococci count on Barnes medium (1956), micrococci count on nutritive agar with $10 \% \mathrm{NaCl}$ and Coli-titar on Mac Conkey broth.
The sausage pH values were determined with the MA 5705 pH metar. Sausage weight loss in the technological production process was calculated in compa-
rison with the initial material. The organoleptic product evaluation was performed according to the point system in the 1 to 5 point range and the results were used as significance coefficients. The evaluation was performed by a 5-member panel.


## RESULTS

For the preparation of own starter culture for fermented sausage production 108 strains of the Lactobacillus, 9 strains of the Streptococcus and 10 strains of the Micrococcus genera were isolated from highquality fermented meat products.
On the basis of stimulative biocenotic relationships among separated bacteria, isolates were selected and identified for dry sausage production, and thus L. casei subsp. casei (2 strains), L. casei subsp. rhamnosus (2 strains) and one strain per following species: L. casei subsp. alactosus, L. plantarum, S. lactis, S. bovis, M. luteus, M. ureae and M. candidus (Milovanović and Šutić, 1985)

A total of 49 variants of dry sausages was prepared with pure and conjoint bacterial cultures and organoleptic evaluation proved that the best sausages were obtained with a combination of the Lactobacillus casei subsp.
rhamnosus and Micrococcus us cultures. All sausage varian ts with these cultures were bet ter than the control variant and featured a better flavour, colour and in most cases also consistency.
The results of these experimen ts should prove whether this starter culture is suitable for industrial dry sausage produc tion.
Results of microbiological $a^{n^{2}}$ lysis are shown in Grafs to 4.

The dynamics of the total $\mathrm{bac}^{\circ}$ terial count presented in $\mathrm{Gr}^{\mathrm{a}^{f}}$ 1 shows that the highest tot ${ }^{\text {a }}$ bacterial count in all variant and almost all replications is registed following drying in one replication of varia 111 and $I V$ the highest bacterial count was registered on the 7 th day followed by a constant decrease. The dynamic of the total lactobacillic $\mathrm{c}^{\circ}$ nt (Graf. 2) is more uneven, but in all variants with a gre ater number of replications the highest values are regis tered on the 7 th day, and in some cases at the end of rip ning period. There are no di ferences between Müller's and our starter cultures in this respect.
The Streptococci count (Grar The Streptococci count (he ing
3) is the highest follow

Graf. 1. Dynamic of total bacterial count during the ripening of sausages.


1. Own starter culture and 250 g Tari S 77.
2. Only Own starter culture ll. Müller's sarter culture IV. Control variant - without any cultures with 500 g Taris 77.

Graf. 2. Dynamic of lactobacilli count during the ripening of sausages


Graf. 3. Dynamic of streptococci count during the ripening of sausages.


Graf. 4. Dynamic of micrococci count during the ripening of sausages

drying or on the 7th day. The highest number is registered on the 7 th day in variants 11 and lll. Since no streptococci were added as starters, even a greater unevenness could have been expected.
Graf. 4 shows that micrococci count was comparatively low in all variants, but nevertheless the greatest in the case of variant ll| (Müller"s culture)
particularly following drying and decreased in the period to the end of ripening. Such dynamics is also evident in variants 1 and 11 , whereas in the case of control variant IV in two replications, the highest count was registered on the 7 th day.
It may be said that there is no great difference in the dynamics of microorganism and certain group counts between variants 1,11 and $\mid 11, \quad i . e$. sausages produced with starter cultures.

The pH value changes were quite similar among examined variants. Following filling pH values remain in the 5.38 (IV) to 5.61 (111) range (table 1), whereas following drying and on the 7 th day they decrease in all variants. At that time the lowest pH value was registered in variant lll (4.72). At the end of drying the sausage pH values ranged on average between 4.74 (III) and 4.87 (IV). The lowest pH value for sausages produced with Müller" s culture may be explained with the highest lactobacilli count. In sausages produced with our culture pH value changes are somewhat less pronounced, which also depends on the lactobacilii count.
pH value changes in tested sal sages also cause weight losses. Weighing results in Table 2 sholl that the greatest weight loss occurs in sausages with the $10^{\circ}$ west pH valuest. Thus, weight loss at the end of drying acc0 unts for $34.28 \% ~(\mathrm{pH} 4.74)$ and $32.62 \%$ ( pH 4.87 ) in variants and 1 , respectively.
The results of organoleptic $\mathrm{e}^{\mathrm{v}^{2}}$ luation are shown in table 3 and 4. It is clear that the var riant 11 is the best graded, $f 0^{\circ}$ llowed by variants 1, |l| and finally IV.
This evaluation confirms preve ${ }^{0^{\circ}}$ usly obtained results (MilovanO vić, 1987) showing that this is an excellent starter culture for dry sausage production, which under our conditions yields $50^{\circ}$ mewhat better results than mil ${ }^{-}$ ler"s starter culture.
The organoleptic evaluation $w^{a^{5}}$ performed at the end of ripe ${ }^{-}$ ning (on the 21 st day) althoug ${ }^{h}$ the sausages reached different commercial maturity at that ${ }^{\mathrm{i}^{-}}$ me. Thus, variants 1 and $11 \mathrm{re}^{\prime}$ ached commercial maturity 10 days after preparation, variant 11113 days after preparation and the control variant $17 \mathrm{day}^{5}$ after preparation.

| Variants | pH value after |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | filling | smoking | 7 | 12 | 21 days |
| 1 | 3.48 | 4.90 | 4.79 | 4.81 | 4.87 |
| 11 | 5.55 | 4.88 | 4.17 | 4.79 | 4.85 |
| 111 | 5.61 | 4.86 | 4.72 | 4.75 | 4.74 |
| IV | 5.38 | 4.92 | 4.17 | 4.77 | 4.82 |


| Variants | Days of ripening |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | 7 | 12 | 21 |
| I | 6.48 | 22.22 | 27.90 | 32.62 |
| 11 | 5.21 | 21.98 | 21.05 | 33.51 |
| 111 | 11.07 | 19.96 | 27.34 | 34.82 |
| IV | 7.17 | 22.11 | 26.73 | 33.29 |


| Quality parameters | Variants |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 11 | 111 | IV |
| External appearance | 4.05 | 4.3 | 4.2 | 3.6 |
| Consi cut appearance | 4.05 | 4.03 | 3.95 | 3.8 |
| Aroma | 3.9 | 4.05 | 3.93 | 3.85 |
|  | 4.15 | 4.35 | 4.13 | 3.7 |
|  | 4.4 | 4.65 | 4.1 | 3.5 |
| Our stability | 4.1 | 4.15 | 3.85 | 3.65 |
| tal points | 24.63 | 25.55 | 24.2 | 22.1 |

Table 4. Organoleptic evaluation of fermented sausages as a general evaluation

General evaluation expressed in:

Variants
। I। Il IV

Total points
Ponderated average
$24.65 \quad 2 b .5 b \quad 24.2 \quad 22.1$
$\begin{array}{llll}4.14 & 4.28 & 4.03 & 3.68\end{array}$
Total average evaluation
$4.93 \quad 5.11 \quad 4.84 \quad 4.42$
Percentage share in the best quality (total quality in percentage)
$82.8 \quad 85.65 \quad 80.6$
73.75

## CONCLUSION

In order to assess the value of our own starter culture a comparison with Müller"s starter culture well-known in ausage production in Europe was made. Four variants of dry salsages were prepared and on the basis of microbiological, chemical and organoleptic anallyses performed it may be concludef that our own starter cultusre has a good quality and may be recommended tor use in industrial dry sausage production.

This starter culture shortening the sausage ripening period and ensuring better sausage organoleptic feature includes Lactobacillus case subsp. rhamnogus and Micrococcus luteus.

## REFERENCeS

Barnes, E.M. (ly56):
J. App. Bact. by, 193.

Joksimovic, J., Šutic Marija Janković, U. (1978):
I he use of technical starter culture in the manufacture $0^{\dagger}$ fermented sausages. 24.Europä ischer Fleischforscherkongref. Kulmbach, Proceedings $11, G 7:$ GT: 7 。
Milovanovic, R. E Šutic, M. 1y851:
Izučavanje medjusobnih odno $5^{5^{2}}$ bakterija mlečne kiseline rokoki iz proizvoda od mes ${ }^{\text {a. }}$ $v$ Kongres mikrobiologa $\mathrm{Jugos}^{12}$ vije. Poreč, 134-135.

Milovanovic Rużica (1987): Biocenotski odnosi bakterija zolovanih az kobasica i dob il ${ }^{\rho^{\prime}}$ nje združenih starter kultur ${ }^{\text {ra }}$ Doktorska teza. Beograd.

Rogoza, M., Mitchell, J.A. ${ }^{\text {E }}$, $0^{2}$ Wiseman,R.F. (1y51):

