MATHEMATICAL SIMULATION OF THE PHYSICOCHEMICAL AND AMINOACID COMPOSITION OF A DIETARY MEAT PRODUCT

M.POPIVANOVA, K.WASSILEV, S.DANCHEV, S.TODORINOV

Higher Institute of Food and Flavour Industries, Plovdiv, Bulgaria

INTRODUCTION

Meat processors in our country and abroad show interest toward meat products with predetermined chemical compositions. Formulas for dietary meat products are of special importance because of the fact that the final product must possess specific chemical composition. Dietary food is supposed to contribute to the limitation or elimination of pathologies in some organs or systems manifested as different diseases. The easiest way to solve this pro-blem is to use mathematical methods.

The most common mathematical method that has been applied up till now in meat technology is the statistic mathematical simulation involved in linear optimization. Recent attempts have been aimed at computer aided preparation of optimal formulas for sausages. Some authors (1) have experimented production of cooked sausages with predetermined chemical compositions. Their formulas have been computer-optimized following preliminary mathematical simulation of the chemical composition. As target function of these models has been chosen the product's price. The limiting conditions include the product's weight, chemical composition, quality, and price of the raw materials. Similar problems have been treated by other authors as well (3).

The method of linear programming (direct or by linearization) found application in optimization on of formulas aimed at improving the action ving the eating quality of the sausage (2). Mathematical me thods have been used to determine the highering ne the biological value of pro tein mixtures (4).

The aim of the present work was as follows: in view the require ments for dietary nutrition; simulate and optimize the physical cochemical and optimize the physical cochemical and physical cochemical and aminoacid compo sition of a high protein and not fat children's dietary meat product observing duct observing the organoleptic requirements requirements and the specific of the processing technology.

METHODS AND MATERIALS

We used the method of linear of timization to timization to develop the matical model matical models. The raw materi als used were: non-fat veal, non-fat pork, semifat pork and yoghurt concentrate.

Initially, the physicochemical and aminoacid compositions of the raw materials were determined (Tables 1 ned (Tables 1 and 2), and were later used to later used to work out the mar thematical models. In our case it is only one for the product aminoacid composition. To determine the limiting mine the limiting conditions the model was the the model we took into consideration the following ration the following require ments: it had to approach ino "ideal protein" (1973) (aminor acid composition) acid composition) while the physicochemical sicochemical requirements were concerted with concerted with specialists in dietary putril dietary nutrition. Our children dietary sausser dietary sausage includes three types of limits types of limiting conditions:

1. Related to the admissible fir amount of aminoacids in the nal nal product. These limitations are of type (1).

$$\frac{A}{B} \leqslant ^{C} j$$
 (1)

where C is the aminoacid level in FAO juideal protein in g/

 $A = \sum_{i=1}^{4} a_{ij} \cdot b_{i}$ mg aminoacid for 100 g of product.
Here a ij (i=1,...,4) and (j=
1,...,8) is the aminoacid level
in s/100 - of total protein; in \$/100 g of total protein;
b (i=1,...,4) is total protein
ingredicate in the respective ingredient;

ing

has

ati'

e

mi"

125

to

0-

ro

i^C i^t/

ne"

19

-

 $B = \sum_{i=1}^{4} \frac{4}{i}$ b_i · x_i g total protein/100 g of product, where bilds indicated above, xi-percentage of each ingredient (i=1,...,4).

the second type of limiting conditions refer to the percenture of each raw material in the final composition. They are of type (2).

 $x_i \leq d_i$ where d, (i=1,...,4), is the ingrediction the final mixt ingredients in the final mixture, the interval is in %.

3. The third type of limiting cond; third type of to the conditions are related to the fact that the sum total of the participating raw materials should be 100%.

$$\sum_{i=1}^{x} x_i = 100$$
 $i=1,...,4$

function we chose function type (4)

$$B = \underbrace{\begin{array}{c} 4 \\ 1 \\ 1 \end{array}}_{i} b_{i} \cdot x_{i} = \max \qquad (4)$$

bi, Xi - as given above.

RESULTS AND DISCUSSION

Remodel's optimal formula was thod for model's optimal formula thod for model's optimal formula thod for "modified simplified for solving problems of linear solving problems of solution optimization. The model Solution optimization". Inc....
Maximum first involved protein Maximum content as a target function, and then the protein content, and then the proteing was accepted as a limiting condition, while the tarfunction was the minimum

fat content (type 5 function).

$$M = \sum_{i=1}^{4} m_i x_i$$
 (5)

where m_i (i=1,...,4) is the fat content in the ingredients.

The model's solution gave the following sausage formula: nonfat veal (x_1) - 60%; semifat

pork (x2) - 5%; nonfat pork (x_3) - 30%; yoghurt concentra -

te (x_4) - 5%. Based on the above formula, a technology has been developed for the production of a dietary cooked smoked sausage for children with cardiovascular diseases. The results from the chemical analyses are given in Tables 3 and 4. It is obvious from Table 3 that the final product is characterized by low fat and high protein contents and thus meets the preset requirements through the target functions for maximum protein and minimum fat content. As far as the aminoacid composition is concerned (Table 4), it has been established that the only limiting aminoacid was tryptophan with an aminoacid number 78. The essential aminoacid levels are very high as illustrated by the essential aminoacids : total content ratio - 44,95.

CONCLUSION

The results obtained give reason to assume that the simulated and optimized final product satisfies the preset requirements and limitations, and can be consumed as dietary food by children suffering from cardiovascular diseases.

Table 1 - Aminoacid composition or the ingreatents

Aminoacid				
aij (g/100 g protein)	Veal	Semifat pork	Nonfat pork	Yoghurt conc:
	(x1)	(x2)	(x3)	conc.
Valine	a ₁₁ =4,65	a ₂₁ =5,77	a ₃₁ =5,25	a ₄₁ =5,76
Isoleucine	a ₁₂ =4,41	a ₂₂ =5,17	a ₃₂ =4,95	a42=49
Leucine	$a_{13} = 7,46$	a ₂₃ =8,66	a ₃₃ =8,49	a ₄₃ =9,30
Lysine	a ₁₄ =11,71	a ₂₄ =9,15	a ₃₄ =8,67	a ₄₄ =7,69
Methionine + Cystine +	a ₁₅ =3,06	a ₂₅ =3,59	a ₃₅ =3,41	a ₄₅ =3,09
Threonine	a ₁₆ =4,24	a ₂₆ =4,38	a ₃₆ =4,22	a ₄₆ =3,98
Tryptophan	a ₁₇ =1,10	a ₂₇ =1,19	a ₃₇ =1,19	a ₄₇ =1,00
Tyrosine + Phenylalanine	a ₁₈ =7,27	a ₂₈ =8,56	a ₃₈ =8,32	a ₄₈ =9,4

Table 2 - Physicochemical composition of the ingredients

CONTRACTOR OF THE PROPERTY OF	aphritish - magatar randistata a aphritish in salah sa s	THE THE PERFORMANCE OF THE PERFORMANCE AND ADDRESS OF THE PERF	
Factor		Ingredient	(x _i)
	Veal	Semifat pork	Nonfat pork
	(x ₁)	(x ₂)	(x ₃)
ter content, V _i , %	V ₁ =73,47	V ₂ =72,42	V ₃ =52,43
tein content,	b ₁ =21,6	b ₂ =19,01	b ₃ =13,45
t content,	$m_1 = 5,23$	$m_2 = 4,50$	$m_3 = 33,75$

Table 3 - Physicochemical composition of the final product

Water content	Fat con	tent Fat	content Kjeld	
of t.w.	% of	t.w. % o	f d.s. % of	
75,1	6,8	27	,3 19,7	5 1,3

Table 4 - Aminoacid composition of the final product

The state of the s				
Aminoacid	C	g/100 g of product	g/100 g of protein	Chemical score %
Valine Isol	MACE I TORRIC EL ARRESTO EL PROPERTO EL PROPERTO DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA	0,96	5,30	106
leucine leucine		0,88	4,85	121
Tysine		1,52	8,43	120
Methionine + cystine		1,70	9,43	171
Inreonine +	cystine	0,64	3,53	101
TIADT		0,82	4,52	113
Tyrosi		0,14	0,78	78
Tyrosine + ph	enylalanine	1,47	8,15	136
The state of the s				

REFERENCES

t

92

69

09

98

03

20

^{1.} Voyakin M.P., V.M.Gorbatov,
Myasnaya industriya SSSR, 10,
20, 26-28.

^{2.} Gasanov G.I., O.N. Krasulya, triva SSSR, 1983, 4, 33-35.

^{3.}Gorbatov V.M., R.M.Salavatulina, V.I.Lyubchenko, G.G.Go-SSSR, 1984, 2, 20-21.

^{4.}Djagonashvili N.I., G.Z. Grigorashvili - Voproci pita-1ya, 1983, 5, 52-54.