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1979, Kahn ang Cohen, 1981).
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. ‘ & . ver,
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he flmCtionaI properties of the resultant proteins as food proteins have

"N Clarifieq. To evaluate the feasibility of applying the microbial
4S8 lutani nase

(wosslinking intr
and op that of my

to meat product processing, we studied the effect of i
oduced by this enzyme on the heat-induced gelation of myosin

scle proteins.

ATER'ALS AND METHODS: The muscles from the porcine longissimus dorsi 4(3é7
Ak Postmortem) were minced twice through a plate with 3 mm pores. ﬂyos'” )
waspreDared from the muscle proteins by the method of Szent-Gyoergyi (1951).

M|crohial transglutaminase (BTGase) was prepared at the Central Research
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and examined under a Hitachi 2300 scanning electron microscope

RESULTS AND DISCUSSION: To detect the formation of intermolecular crosS“““'
hanges in the molecular sizes of myosin B after the BTGase reaction weré
alyzed by SDS-PAGE (Fig. 1). The fractions of the myosin heavy chain and

tropomyosin diminished and ultimately disappeared as the reaction time was

ncreased. Presumably the polymers generated by BTGase could not enter the
e 39 : 5 g ht
ient gels. No change in the fractions of actin, troponin, and myOS'n‘Ig
1in were detected under the conditions used here. These results are If

wgreement with those of Nonaka et al. (1989), who treated rabbit myOSinand

113 r . ~ . el
when the native myosin B was incubated at 40°C without BTGase, it formed 38
after 30 min, while the polymerized myosin B turned into a gel after 20 mi"
(Fig. 2), These phenomena indicates that heat-induced gelation (at 400(:)0f

myosin B was promoted by the polymerization.

; el
3 shows the gel-strength of myosin B after heating at 70°C. The heat &

trength at 70°C markedly increased as the polymerization proceeded. This
3 ) j These

selation was not restrained by the presence of dithiothreitol (Fig. i
| 4 § That 2§ . : was o
sults suggest that the heat-induced gelation of polymerized myosin B
fluenced by intermolecular disulfide bond formation.
& = : ‘ ghow!
he effects of protein concentration and pH on heat-induced gelation ar

; et gie : of
in Fig. 4 and Fig. 5, respectively. The dependency of heat ;nifstrrngth

polymerized myosin B on protein concentration was higher than that of the @
at 1y wuncin R g . dr
native myosin B, and the optimum pH was shifted to the alkaline side. A

difs
ati

| ; , r
erence in the dependency of heat-induced gelation on the heaing tempe
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was seen (Fig. 6). The heat gel-strength of polymerized myosin B i ncrease
greatly, while that of native myosin B decreased gradually with inrreﬁs'ng
temperature.
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Scanning electron micrographic observation of gels heated at 607 and 90

showed that the ultramicrostructure of polymerized myosin B gel differs

. . ; e
markedly from that of native myosin B. In the case of native myosin By th
three-dimensional network structure of the gel became looser upon hedt”m
90°C. On the other hand, the polymerized myosin B gel became NUIV Sfdhlp'

. fure’
probably due to the formation of a tight three-dimensional network struc dw
. L spo0
upon heating at 90°C. These structural changes upon heat treatment corré

well to the changes in gel-strength.
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Th@-: A e : - - B
“S€ resyltg suggest that the mechanism of the heat-induce of polymerized

Myo< i .
Yosin B Is different from that of native myosin B.
The he
BTG

at gel-strength of muscle protein was also increased by the action of

45¢ (Fig. 8). However, it was shown that the heat-induced gelation of muscle
"08eins crossiinked by BTGase has a different dependency on heating

t“ﬁmratUre and protein concentration from that of BTGase-treated myosin B.
Hihough 4

. ; . ayesest the TGase may
[ reason for this is not clear, the results suggest that Bllase may
® Usefy)

|

In meat product processing

1] , A S

: NFL[JS ION: The heat-induced gel of myosin B crosslinked by BTGase showed

Markea . ! o i =S
ked|y increased gel-strength as compared with that of native myosin B.

EIJR(\ ! S A e

; 1€ proteing treated with BTGase also showed the same effect. This enzyme 1S

"\f'H(‘ =) R 1 ¥
ted to have applications in the meat processing industry.
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Fig. 8. Effect of BTGase on heat-induced gelation of
muscle proteins

Reaction of BTGase, 40°C-60min; @, muscle protein (16%)
with BTGase; O, muscle protein (16%) without BTGase; A,
nuscle protein (13%) with BTGase; A, muscle protein (13%)
without BTGase; M, muscle protein (10%) with BTGase; O,
muscle protein (10¥) without BTGase.
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