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R Figure 1. Isotropic (l) and anisotropic

W (A) bands of a myofibril from porcine

E psoas major 30 hours post-mortem.

t From Swatland (1989b).
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Refractive index (n) is given by n c/v, where ¢ velocity of light in a vacuum (= 3. 10 ¢

velocity in the medium of the myofibril. Wavelength (A) decreases with n, only frequency is constant.
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radial pattern so that the path-length through the meat is constant. Low wavelengths tend to be umforle ;
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Spatial measurements of scattering for meat were introduced by Birth et al. (1978), based on th

= radiant exitance on the lower surface, A = B, of regression, B = B, of regression, andr = path l
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with subjective paleness for slices of
¥ +r pork, arranged in a WP matrix and

y s plotted with contour intervals, r = 0.25
o ) (from Swatland and Irie, 1992b).
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ch as these has revealed many interesting properties of meat probes. There is a positive bias
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