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1. INTRODUCTION

There is a great need for easy to use mathematical formulae to solve technical problems. A difficulty is the 
complicated nature of the processes involved.
The cooling down of meat products is such a process.
The need for handy formulae arose in the working area of the author, calculating the temperature distribution of 
chicken carcasses during the cooling down process in chicken slaughter houses.

2 LITERATURE AND SCOPE

ID-DLO (former't Spelderholt) in the Netherlands delivered a considerable amount of effort in describing the 
cooling process of chicken carcasses [1], [2], while the Meat Institute of TNO fulfilled this role in red meat 
industries [3].
Other sources are Levy [4] and the VDI Warmeatlas [5]. All authors calculate the mean temperature; Moermafl 
calculates core temperatures, and Levy proposes a method to calculate the surface temperatures. Based on both 
proposals a formulae can be derived for the whole temperature distribution, core- and surface temperatures 
being extremes of this distribution.
To derive this result is the scope of this publication.

3. DERI VINO THE TEMPERATURE DISTRIBUTION

3.1 Assumption

Following are the assumptions as accounted for:
-The cooled body can be seen as a slab.
-The body is isotrope, all physical proportion being the same throughout the slab.
-The initial temperature distribution is homogeneously throughout the slab.
- The derivation holds for times, sufficiently long to prevent calculation problems at the beginning of the 
cooling process. The cooling process can be characterized by two parameters, t and j, and the temperature field 
is a second degree function of the distance.

The last assumption is now explained.

The temperature distribution can be written exactly [5]:
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This is an exact solution to the differential equation for an infinite slab.

Compared with this exact solution, it is investigated whether the calculated temperature distribution was 
sufficiently a square function.
Taking the Standard Process as an example (see for details fig. 1) a graph was constructed (fig. 2). At some 
u°oling times the temperature profile is reported, together with the squared solution.
, ls aPParent, the differences are marginal, as can be seen in fig. 3. The solutions differ only some 0 8°C ratine 
less than about 4%.

Il ls concluded, that the assumption o f a square temperature distribution is sufficient to describe the process.

Recapitulation of the first order cooling process 

AH sources state the process as follows:

Tg = 3’J + (T b - T i ) e - tA  ( 1 )

iTboth (Tb) (initial temperature) and (T,) (ambient temperature) are known, the mean temperature (T^ can be 
«culated as a function of time (t) by means of the parameter t.

Expressed in dimensionless units, t can be described as [4]:

X --- r (1+0.423Bi)a.Bi ( 2 )

ere Bi -  ad/X en a -  X/pc. The distance d is measured as half the total thickness of the slab. 
ms is done because of the symmetry of the problem: the total thickness of the slab accounting for 2d
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The core temperature can be calculated by means of j [3]:

( l a )

The parameter j is constant during the precess (as well as t) and has a value between 1 and 1.5. In definition:

As can be seen, the j-value is a delay factor (1 a) difined by (3).

3.3 Derivation of the i-value

When looking for a complete distribution of the temperature, we must generalize the j-value. Therefore, the 
next derivation is necessary.
Levy calculates the surface-, average- and coretemperature assuming a square temperature distribution in the 
slab, of the following form:

T0 is the surface temperature and y is distance from the surface (y=0 at the surface, y=d at the core, see fig. 4). 
The constants a and b are determined from the conditions:

Where Y -  y/d - ¡¿(y/d)2. We try to express the surface temperatures in terms of the average temperature Tr  
Levy states, that the place where this temperature Tg occurs is at:

T-To=ay+by2

0

a (Tq-T.)

The result is:

( 4 )

The place is given relative to the half slab width. 
When this result is put in form (4), Tf can be solved:

Tg-T0=BHT0-T2) [(1-/55)- a (1-v/Vb)2]

This means:
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Comparing with (4a) this result can be expressed as:

3+3B i Y
r - r j = ( t  - T j )

3 + B i
( 5 )

^gain comparing with (1) and (1 a), we recognize the second factor of the right hand side to be the generalized 
J'Value to be

gen
3 + B i  Y 
3+B i

3+3 Z  ( ^ ) 2 B i
d  d

3+B i (6)

Atthe surface (T-T0) the j-value is lower than 1, at the surface it equals 1, and at approaching the core it is 
u°re than 1.

Checking for special cases the j-value becomes as follows:

^  the core, y=d:

-i _ 3+3 [ 1 - h ]  B i  _ l + B i / 2  ^  r%
J k --------- ------------  = t  . (1<Ju<1 /5 )3+Bi l + B i / 3

Atth<ie surface, y=0:

. _ 3+3[0-0]Bi _ 1
-* o 3+Bi l + B i / 3

( o < j  < 1 )

The average j-value (y^Cl-v'V&jd) becomes:

7 = 3+3 [1-^/% ~ ^ (1 -yJ'fe)2] B i
9 3+Bi = 1

Alii.,
¡j, J '^ to es  are in coherence with the special cases, which Levy already calculated. 

iU ’ the temperature distribution can be given as:

3*3
m , 2 )  = T  + ----------- ± ________Ë _______

d  1 3+Bi < V Ti> e
■t/T (7)

4 Se c l u s i o n s

p
^ u l a e  (6) is been graphically expressed in fig. 5.
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For some values of Bi the generalized j-values can be read from a selected value ofy. Form (la) then gives the 
desired temperature, taking j as the generalized j-value.
It is concluded, that the temperature distribution can indeed be taken as a quare function of depth. Further, the 
formulation of this generalized j-value is concluded to meet the requirements stated in chapter 1, to arive at a 
simple way to describe temperature distribution in an infinite slab.
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I , I
As a standard example, this publication uses following conditions: a body cools from 40°C 
in an environment of 0°C at a heat transfer rate of 100 W/nFK.
All variables are as mentioned below:

Tb=40°Cc=3360 J/kgKBi=5 
T,= 0°Cp=1050 \l̂ tc?x=AS.% min 
d=0,025 m a= 100 W t a ^ l J O
A.=0,5 W/mKj0 =0,375

Fig. 1 Standard cooling process

"Temperature in an infinite slab".

Fig. 2 As a function of depth at the standard process the exact temperature distribution is compared with the sq u ^  
profile.

"Square and exact solution function".

Fig. 3 As a function of depth the temperature difference between exact and square distribution is given at standard 
conditions (fig. 1). No difference exceeds 0.8°C.

"Temperature distribution in an infinite slab".

Fig. 4At a certain cooling time the temperature distribution is given.
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