TITLE: INSTRUMENTAL MEASURES OF SENSORY ATTRIBUTES FOR THE CHARACTERIZATION OF CHORIZO DE PAMPLONA.

AUTHORS: Ansorena, D., Gimeno, O., Astiasarán, I. and Bello, J.

Departamento de Bromatología, Tecnología de Alimentos y Toxicología, Facultad de Farmacia. Universidad de Navarra. 31080-Pamplona, Spain. Fax: 34-948-42-56-49. Mail:iastiasa@unav.es

INTRODUCTION

Chorizo de Pamplona is a traditional type of dry fermented sausages that present some peculiarities as a consequence of its formulation and technological process. It has a "Norma de calidad" in which general parameters as moisture, fat, protein, carbohydrates and hidroxyproline are limited. Some previous works have also try to define aspects related with sensorial and some physico-chemical analysis (Santamaría et al., 1992; 1994).

OBJECTIVE

The aim of this paper was to obtain instrumental measures of aroma, texture and colour for commercial samples of Chorizo de Pamplona in order to contribute to its characterization.

MATERIAL AND METHODS: A total of 12 samples from differents commercial branches of Chorizo de Pamplona were analysed. Objective colour measurement: Reflectance spectra were determined with a UV/VS Perkin Elmer Lambda 5 spectrophotometer from 400 to 700 nm using an integrating sphere with the conditions established by Ansorena et al. (1997). The samples were measured on the surface of the dry fermented sausages. Texture profile analysis (TPA): An universal TA-XT2i texture analyser was used to conduct texture profile analysis (Bourne, 1978). A square samples of 1 x 1 x 1cm were compressed twice to 60% of their original height with a crosshead speed of 5 mm/sg and recording speed of 5 mm/sg. The parameters were obtained using the available computer software. Analysis of volatile compounds:25 g of frozen sausage were ground and placed in a 250 ml flask with 100 ml of water. A second flask with 5 ml of dichloromethane and 150µg of dodecane (i.s) was also attached to a modified Likens-Nickerson apparatus. 5 ml of dichloromethane were also added to fill the apparatus solvent return loop. Both solvent and sample mixture were heated to 70°C and boiling T^a respectively, maintaining these conditions during 2h. The volatile compounds were analysed in a HP 6890 GC System (Hewlett-Packard) coupled to a 5973 Mass Selective Detector (Hewlett-Packard). 1 µl of the extract was injected into the GC, equipped with a capillary column (30 m x 250 µm i.d. x 0.25 µm film thickness HP-5MS). Chromatographic conditions were as follows: initial oven temperature was maintained during 10 min. at 40°C, and subsequently programmed from 40°C to 120°C at a rate of 3°C/min and at a rate of 10°C/min from 120°C to 250°C where hold during 5min. more. Inyector Ta: 250°C ; Mass range? 30-350 amu ; Solvent Delay: 4 min. ; Electron impact at 70 eV. Identification of the peaks was based on comparison of their mass spectra with the spectra of the WILEY library, also by comparison of the Kovats index, and in addition, in some cases, by comparison of their retention time with those of standard compounds. Semiquantitative determination of the volatile compounds was based on the ratio of their peak areas to the peak of dodecane (internal standard), and the results were expressed as ng dodecane /g dry matter.

DISCUSSION

Measures of colour (Table 1) showed the lower coefficient of variation (C.V.) for L* value (lightness) which is the most informative parameter to show color changes (Oellingrath and Slinde, 1985). The highest variability was found for b* values (yellowness) according with the results obtained by Ansorena et al. (1997) in Chorizo de Pamplona with the same illuminant.

Table 2 shows the results of TPA. Hardness, gumminess and chewiness were the parameters which showed the highest variability. These parameters are greatly influence by some compositional parameters as moisture and fat. Dellaglio et al. (1996) in Felino salami samples with C.V. of 14'3% for moisture and 11'8% for fat found very high C.V. (>30%) for rheological parameters. Chorizo de Pamplona analysed samples showed C.V. of 4'54% for moisture and 2'64% for fat. The C.V. of the analysed rheological parameters was between 4 and 15% which could not be considered too high.

In relation to the volatile compounds (Table 3), the highest concentration was obtained for the acids (62.68%), followed in order by the aldehydes, terpenes, phenols, esters, alcohols, ketones, sulphur compounds, aromatic hydrocarbons and alkanes. Aldehydes is the second group, from a quantitative point of view, with 7.91% of the total area. Most of them are formed by autooxidation of unsaturated fatty acids (hexanal, heptanal, 2-heptenal, 2-octenal, nonanal, 2-nonenal, 2-decenal and 2,4-decadienal) and undesirable odours have been associated to some of them (Berdagué et al., 1991). High molecular weight aldehydes were also found (tetradecanal, pentadecanal, hexadecanal, 9-octadecenal, octadecanal), and they could act as precursors for the volatile alkanals and alkenals (Dirinck et al., 1997). Other found compounds related to the oxidation of lipids were some 2-methylketones, to which a role in the flavour of cheeses has been atributed (De Frutos et al., 1991), and the 1-octen-3-ol, with a marked odour of mushroom. A great amount of terpenes, as a consequence of the use of spices were isolated. Also, the presence of eugenole, isosafrole and myristicine has been associated to the use of pepper. The presence of sulphur compounds has been associated to the use of garlic (Johansson et al., 1994). As observed by Mateo et al. (1996) in chorizo, numerous phenolic compounds were detected due to the process of smoking, being the phenol,4-ethyl 2-methoxy and the 4-methylphenol the two most abundant ones. Smoke also contributes to the presence of aromatic hydrocarbons, some of which have been found as well in raw matter (e.g. toluene, styrene) (Rembold et al., 1989). Special mention can also be made for the BHT, which is added as a preservative and it is even more abundant than the sum of aldehydes.

CONCLUSIONS

Not too much variability was found for parameters related to texture and colour, showing an uniformity for these properties in the commercial products. Among volatile compounds, the groups of acids is the most abundant one (62.68%). Due to the extraction method, most of the compounds are those of high molecular weight, with a not very high relevance in odour. BHT has been found in some of the samples.

REFERENCES

Ansorena, D.; De Peña, M.P.; Astiasarán, I. and Bello, J. Meat Sci., 1997, 46(4), 313-318. Berdagué, J.L.; Denoyer, C.; Le Quéré, J.L. and Semon, E. J. Agric. Food Chem., 1991, 39, 1257-1261. Bourne, M.C. Food Technol. 1978, 32(7), 62-66,72. De Frutos, M.; Sanz, J. and Martínez-Castro, J. J. Agric. Food Chem., 1991, 39, 524-530. Dellaglio, S.; Casiraghi, E. and Pompei, C. Meat Sci., 1996, 42(1), 25-35. Dirink, P., Opstaele, F. and Vandendriessche, F. Food Chem. 1997, 59(4), 511-521. Johansson, G.; Berdagué, J.L.; Larsson, M.; Tran, N. and Borch, E. Meat Sci., 1994, 38, 203-218. Mateo, J. and Zumalacarregui, J.M. Meat Sci., 1996, 44(4), 255-273. Oellingrath, I.M. and Slinde., E. J. Food Scien. 1985, 50, 1551-1555. Rembold, H.; Wallner, P.; Nite, S.; Kollmannsberger, H. and Drawert, F. J. Agric. Food. Chem., 1989, 37, 659-662.

Santamaría, I.; Lizarraga, T., Astiasarán, I. and Bello, J. Rev. Esp. Cienc. Tecnol. Aliment., 1992, 32(4), 431-445.

Santamaría, I.; Lizarraga, T., Iriarte, J., Astiasarán, I. and Bello, J. Fleischwietsch., 1994, 74(9), 961-962.

ACKNOLWEDGEMENTS

We thank to the Government of Navarra, PIUNA, the Fundación Empresa-Universidad de Navarra and the Fundación Roviralta for their financial support. Also to Dr. Mohino for his scientific advice.

RESULTS

Table 1. Colour parameters

Table 2. Texture parameters

	L*	a*	b*		Hardness (g)	Springiness	Cohesiveness	Gumminess	Chewiness
Mean	50.91	24.31	14.95	Mean	5900.65	0.57	0.49	2941.92	1743.86
C.V.	6.05	9.75	18.86	C.V.	13.75	7.02	4.08	15.11	13.83

Table 3. Profile of volatile compounds. Mean expressed as ng dodecane/ g dry matter.

KI R	1 Compound	Mean	CV	KI	RI Compound	Mean	CV	KI RI Compound	Mean	CV	KI RI Compound	Mean	CV
	Acids	hanna			Alcohols	with the second	100 000	Terpenes	ALC Address	and set it	Alkanes	- water many	
C	Butanoic acid	80.80	44.58	833	C 1-Pentanol, 4-methyl	53.59	56.39	926 B Thujene	325.85	25.71	800 B Octane	31.61	60.11
045 B	Butanoic acid, 3-methyl	4469.46	165.95	853	C 2-Furanmethanol	163.82	81.64	931 B a-Pinene	1070.59	53.38	1300 B Tridecane	119.52	105.38
		890.31	39.60	868	B Hexanol	62.55	20.11	945 B Camphene	49.10	35.99	1400 B Tetradecane	84.71	132.21
A VICE	Onterrational	1798.91	68.91	984	B 1-Octen-3-ol	127.24	66.00	972 A Sabinene+b-Pinene	4914.33	83.94	1500 B Pentadecane	92.06	105.70
-00 A	Descriter	8212.99	73.54	1034	B Hexanol, 2-ethyl	102.14	14.45	992 B b-Myrcene	514.83	42.33	1600 B Hexadecane	247.08	1.47
A ST	Dodess	3329.92	110.53	1038	C Benzenmethanol	77.31	50.48	1000 B a-Phellandrene	183.31	2.56	1700 B Heptadecane	217.89	49.15
1768 A	Tetradecanoic acid	7113.66	63.20	1101	A Linalool	304.16	35.63	1006 B 3-Carene	1014.87	84.82	1800 B Octadecane	traces	
A	9-Hexadecenoic acid	3480.08	69.87	1113	C Phenylethylalcohol	571.58	106.84	1014 B a-Terpinene	350.35	95.34	America Automa	792.853	
A	Hexadecanoic acid	57817.29	62.53		B Borneol	159.99	52.67	1026 A Limonene	1793.39	61.22		(0.28% of T.)	
A	9,12-Octadecadienoic acid	25832.57	48.79		C 4-Terpineol	2324.48	53.15	1058 B g-Terpinene	913.33	40.53	1280-201 10 m		
A	9-Octadecenoic acid	64519.89	41.94		D 1.6-Octadien-3-ol / a-Terpineol	176.10	78.67	1086 B a-Terpinolene	526.27	44.94	Aromatic Hydrocarb	ons	
	and and and		62.68% of T.)	11.0	b the communities of a ringhing		.46% of T.)	1214 D Terpene	178.42	73.49	C Toluene	49.08	30.03
	Aldehydes	111515.00 (02.0010 01 1.)	hert	Ketones			1340 D Terpene	119.49	52.56	851 B Ethylbenzene	14.56	23.93
802 A	Hennel	276.83	35.13	807	B 2-Heptanone	45.64	23.18	1379 D Copaene	267.54	108.34	860 B m-xylene	171.99	18.52
	2.E.	400.09	71.02	1.1570.	C 2(3H)-Furanone, dihydro-5-methyl	133.34	48.46	1410 C Cis-Cariophyllene	234.55	93.08	886 B Styrene	23.69	3.08
		172.49	126.98		B Camphor	125.84	79.05	1422 B b-Cariophyllene	1270.83	74.13	990 B 1.2.4-Trimethyl-	47.16	68.40
233 E	Benzaldehyde	183.33	43.42		B Verbenone	292.26	10.55	1440 C a-Bergamotene	106.96	53.16	benzene		
		60.58	30.93		B Geranylacetone	218.15	135.95	1458 C Humulene	107.29	64.81	1023 B m-Cymene	660.59	73.38
		790.00	28.89		B b-lonone	410.09	112.22	1450 C Humanene	13941.269 (1288 D Methylnaphtalene	37.76	115.17
		96.00	32.84		C 2(4H)-Benzofuranone,5,6,7,7	504.77	83.69	Others	13741.207 (4.7270 01 1.9	1592 D Trimethylnaphtalene	39.99	77.44
		440.71	28.54	1330	a-tetrahydro-4-4-7a-trimethyl	504.77	65.07	1151 C Benzene, 1,2-dimethoxy	92.79	95.51	1572 5 11111111,1111,1111	1044.80	
101 1	2.2.1	149.40	39.49	1441	C 2(3H)-Furanone, dihydro-5-(2-octenyl)	514.46	52.32	1243 C Dimethoxytoluene	99.20	22.83	Collins Sont Lines	(0.37% of T.)	
		149.40	22.92		C g-dodecalactone	215.00	49.80	1287 B Isosafrole	172.36	41.83		(0.5770 01 1.)	
		67.83	72.05	100000000	B 2-Pentadecanone	689.97	67.43	1478 C 2,6-di(t-butyl)-4-hydroxy-	844.09	109.38	KI=Kovats Index		
						266.03	64.11	4-methyl	044.05	109.50	RI=Reliability of identific	ation	
		265.00	117.95	1897	B 2-Heptadecanone		1.21 % of T.)	2,5-cyclohexadien-1-one			(Criteria as Berdagu		
1819	B Hexadecanal	575.49 15681.44	65.52 42.38	self1		3413.343 (1.21 % 01 1.)	1483 C 2,6-di-t-butyl-4-methylene-	1231.09	115.66	CV=Coefficient of variat		
(C 9-Octadecenal								1231.09	115.00	T.=Total	aon	
(C Octadecanal	1081.56	26.31		Phenols	117.07		2,5-cyclohexadien-1-one	00000	143.44	1.=10(8)		
	octadecanal	2059.86	38.32	and the second second	B Phenol	317.87	84.83 79.15	1497 C 3-tert-Butyl-4-hydroxyanisole	8579.02 938.43	80.81		and the second second	
	Esters	22407.169 (7.91% of T.)		B Phenol, 2-methyl	310.51		1528 B Myristicine					
813	B Propanoic acid, 2-OH, ethyl ester				B Phenol, 4-methyl	750.31	119.64	1562 C Elemicine	887.16	83.11 (4.53% of T.)	CONTRACTOR AND		
		610.91	129.95		B Phenol, 2-methoxy (Guaiacol)	574.88	86.62	divid - alienia vanado	12844.139	(4.55% OI 1.)	and the state of the state		
		43.64	3.58		B Ethylphenol	40.10	51.45		22674.14	13 6004 -6T			
1191 (C Methyl salicilate	50.09	62.69		D Phenol, 2,?-dimethyl	240.01	75.88	1518 B Bht	22574.16	(12.50% of T.)	ST ELOPIDE -		
		49.98	29.44		D Phenol, ethyl-methyl	69.05	42.42				and the state of the second		
		107.64	39.32	1248	B Dimethoxyphenol	145.40	71.62	Sulphur compounds	170.00	20.62	A MARKEN AND AND AND A		
1398 1	B Decanoic acid, ethyl ester	151.48	43.05		C Phenol, 4-ethyl, 2-methoxy	911.94	127.77	848 B 1-Propene, 3,3'-thiobis	179.02	20.52 36.92	Zhisting by		
1723	A Tetradecanoic acid, methyl ester B Tetradecanoic acid, methyl ester	959.10	186.61		B 4-Vinyl, 2-methoxyphenol	227.30	70.32	908 B Propanal, 3-methylthio	211.83		Constant Parts		
1795	B Taradecanoic acid, methyl ester	211.33	84.97	1	C Phenol 2,6-dimethoxy	493.50	93.09	913 B Methyl allyl disulphyde	229.27	32.74	ALCONDED STATEM		
	· cuadecanoic acid, ethyl ester	816.57	162.86	1364	B Eugenol	109.82	43.38	1076 B Diallyl disulphyde	1387.13	48.82	animased on ballin		
	rexadecanoic acid, methyl ester	668.87	64.00		B Methyl eugenol	170.15	57.41	1133 C Sulphyde allyl methyl	120.12	24.32			
	C Hexadecanoic acid, ethyl ester	691.78	186.09	1456	C Eugenol o isomer	109.57	79.42	1296 C Trisulphyde, di-2-propenyl	397.92	67.05	P XIMPET OF THE		
	A 9.12-Octadecadienoic acid,			1609	C Phenol, 2,6-dimethoxy-4-(2-propenyl)	120.46	38.48	and drive another the	2525.281	(0.89% of T.)	discount is seen at		
	methyl ester	193.50	31.19			4590.88 (1.62% of T.)	and the state of the state of the			the state of the second		
_	A 9-Octadecenoic acid, methyl ester	75.74	62.63										
-		4630.6205	1.63% of T.)										