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ON-LINE EVALUATION OF MEAT QUALITY USING PROBES AND ROBOTS

Howard Swatland

Department of Food Science and Department Animal & Poultry Science, University of Guelph, Guelph, Ontario N1G 2W1, Canad?
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Abstract

Robotic probes can navigate using ultrasonics. But, without navigation or with a high probe resolution, incoming data must be CheCkec
for the type of tissue from which they originate. A method for this using a Boolean matrix is described. New methods also,ar
described for exploiting sample heterogeneity, measuring meat softness by vacuum application of fibre optics, combining elCCF“c 1
optical and rheological probes, using polarised light, and for multichannel probes. It is concluded that vertical integration within
meat industry is a prerequisite for exploiting meat-quality probes.

Introduction

To be applicable in a practical situation, the on-line evaluation of meat quality must be fast enough to keep pace with processi{lg l.me
speeds in major plants, and must be based on objective measurements (Swatland, 1995). Measurements must be non—contamlnaFlr;S
and relatively non-destructive. On-line evaluation of meat quality could improve the feed-back of information and financial incerltl"c .
to producers of high quality carcasses, could improve meat grading to allow reliable quality control procedures, and could Cnha{ln
profitability by allowing niche marketing and least-cost optimisation of meat processing. At present, meat quality evaluation on~”
is at the threshold of being useful: but we still have a long way to go. This presentation of the most recent research findings
examine some current problems and possibilities for future development.

Range of methods

S . m
There are numerous methods for on-line evaluation of meat quality, ranging from widely used methods for predicting meat yield i
fat depth, to various experimental methods at the prototype stage of development. Some of the methods are listed in Table 1.

will be familiar to the audience and need no further introduction.

Table 1. Some on-line methods for evaluating meat quality

Property Methods Quality attributes =
Subcutaneous fat depth Diode probes, Predict meat yield

Ultrasonics
Acidity, pH Glass electrode, Paleness-darkness, fluid exudation, softness

Solid-state electrode

Electrical impedance 2 or 4 electrodes, conductivity, Paleness-darkness, fluid exudation, softness
capacitance, phase angle

Muscle internal reflectance Fibre-optic spectrophotometry Myoglobin concentration, paleness-darkness

Fat internal reflectance Fibre-optic spectrophotometry Carotene yellowness, short-chain translucency

Connective tissue Depth probe for ultraviolet Amount and distribution of collagen and elastin,
fluorescence pyridinoline cross-linking of collagen

Rheology Electromechanical probes Toughness

Surface appearance Video image analysis Carcass shape (muscularity), rib-eye area and

marbling, subcutaneous fat colour

Near infrared reflectance Fibre-optic and surface reflectometers | Triglyceride content, collagen content B

Emulsification in secondary | Electrical impedance, light scattering Emulsifying capacity or state

processing probe
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Navigation, integration and recognition

oHﬂnd-held diode probes have been very successful in fat depth measurement for predicting the meat yield of pork. With the high cost

labour and the repetitive nature of the task, however, hand-held probes are a prime candidate for automation. But automation creates
% new problems. Obviously, cost is a factor
| when designing an automated probe. A
& smart, navigating robot is considerably more

w e g expensive and complex than a non-
ATER SUPPLY FOR JETS ON ROBOT ARM MOVING DO navigating machine. Figure 1 shows a

HICH THE ULTRASONIC ’ THE CARCASS navigating robot developed by my colleague,
‘RANSDUCERS RIDE _ ; | Professor Andrew Goldenberg at the
: University of Toronto Robotics and
Automation laboratory. It navigates
ultrasonically, using transducers sliding over
the pork carcass on water jets, and is able to
steer itself to particular locations relative to
the ribcage and split vertebral column. At a
particular point, it probes the carcass to
make a fat-depth measurement. At which
time, meat quality measurements also may
be made optically, using optical fibres to
assess meat quality in an integrated volume
of several cubic centimetres of muscle. Only
rarely is the probe likely to stop and measure
at an inappropriate location. Thus, with a

navigating robot and a measurement made
COLUMN, AND ULTRASONICS with low spatial resolution (integration

FINDING AND COUNTING RIBS through a relatively large volume), there is

: little need for recognition software to check
that the measurement is from an appropriate
location.

ST 7

S

:;tnthe ther extreme, however, consider a probe operated by a non-navigating robot that simply probes whatever tissue is placed in
or; Lof jt (hopefully not the human operator). The probe may strike a bone agd g0 nowhere (stopped by a forc@ overload cut—qff),
wh.. &Y got to an inappropriate location, attempting to measure meat quality yvlthm a seam of fgt or connective tissue. Also, cons:hder
“’inad hapvpens if the diameter of the probe is reduc<‘3d.to allow easier p§netrat10n .of a carcass with a hard, dry rind. Then the optlcal
Cang Y In the probe must be reduced as well. This increases the spatlal‘resolutlop qf the probe and decreases the volume oftxssue
in “bUllng to the integrated measurement. Now even a seam of marblmg fat within a muscle at Fhe correct target may Xleld an
i |, Propriate spectrum for an assessment of meat quality. In other words, if the probe does not navigate, and if the probe diameter

Uced, then it becomes necessary to check that an incoming spectrum is appropriate.
Atry S
trix recognition

QNumerOUS sophisticated methods are available for recognizing images, and a spectrum is really a very simple image, comparable to
. "aster line of a video image. But commercially available software is expensive and not easily incorporated into a probe system.
i Problem was solved by using the Boolean interrelationships of the scalars within the vector of the spectrum (Swatland, 1998a).
i,i:nsid@f the spectrum for a blue filter glass in front of white opal glass.(Figure 2). Violet to blue light from 400 to 470 nm is more
1 o 8¢ than green, yellow, orange and red light from 480 to 700 nm. This spectrym for a'number of measurements from wavelength
|, 1 Was converted to a probability matrix called a Pmat and shown on the right of Figure 2. For reflectances from wavelength
was 0, the Pmat is shown as a triangular matrix containing scalars, (n * (n-1)) / 2, to store a comparison of reﬂectanges gt each
el.ength compared with reflectances at all other wavelengths. For example, column 1 of the blue-filter Pmat shown in Figure 2

2 oo 1S the results of comparing reflectance at wavelength 1 with reflectances at wavelengths 2 to n. As another exgmple, colgmn
of the red-filter Pmat contains the results for wavelengths 3 to n. Finally, the Pmat tri_angle termiqates on the right with comparison
Wy ® Penultimate with the ultimate wavelength, of wavelength 30 with 31, or 690 with 700 nm in th1.s.cas.e. If reﬂectanpe at one
b elenglh is less than reflectance at another wavelength, a value of -1 is assigned to the appropriate position in Pmat and illustrated
| isohq black in Figure 2. Conversely, if reflectance at one wavelength is greater thap reﬂectan.ce at another wa\{elength, a valu‘e of
fro 3SSigned to the appropriate position in Pmat, and this appears as a white area in Flgure 2. With numerous decimal places derived
to fuly analogue to digital conversion of the photometric signal, very rarely (if ever) is reflectance at one wavelength exactly equal

Ctance at another wavelength.
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Pmat of blue filter Eh This column compares reflectance at 400 o

:5: with reflectance at 30 other wavelengths
H from 410 to 700 nm
Reflectance spectra of two glass filters
1
Red
5
bt £
=
s .5
& = Blue
T T This colu t 41007
& 88 Fh column compares reflectance a
I | e ad l W E:: with reflectance at 29 other wavelength$
9o0 508 508 700 from 420 to 700 nm
Wavelength nm
1
= White means >
H Black means <
Figure 2

Pmat of red filter

This triangular matrix is used for demonstration purposes to explain and display the method of operation. In practice, the samé e
result is achieved with a vector. To display the concept for this lecture, a value of +1 is shown by white, while a value of -1 is sh0
by black. Later on, we will use gray levels between white and black to illustrate intermediate values. Thus, the Pmats in Figu™®
are a Boolean representation of the actual spectra. There is some loss of information because, when the spectrum is recreated
the Boolean matrix, there is a loss of grey levels and absolute values. But, a major advantage is gained because spectra can 1%
easily manipulated. That is, they can be summed, averaged, and compared with other spectra strictly on the basis of the shape © ’
spectrum - not using absolute values. Sharp-eyed members of the audience may note that reflectance at 670 nm for the red filtef
just slightly higher than reflectance at 680 nm, yet there is no corresponding white cell in the bottom right corner of its Pmat, Wi
is solid black. This is because the method works best if spectra are smoothed before the Boolean matrix is created. A fter smoothlng’
reflectance at 670 was less than at 680 nm.

Having demonstrated the concept, we may now proceed to an application in accepting or rejecting spectra obtained by a probe: Thz
example shown in Figure 3 is for the separation of connective tissue (CT) from muscle (M) in pork. For each type of tissue I
cumulative probability matrix called a Cpmat was trained by adding the Pmats of known spectra. The scalars in a Cpmat may
called accumulators. Thus, the accumulators in a Cpmat become more negative if reflectance at a particular wavelength consiste” i
is less than reflectance at another wavelength, while the accumulators become more positive if reflectance a particular wavelel gd
consistently is higher than reflectance at another wavelength. However, accumulators for comparisons with a random outcom®
towards zero. After a Cpmat is trained, the accumulators are divided by the number of spectra used for training. Thus, the maxim 15
range for any accumulator in a completed Cpmat is from -1 to 1. In Figure 3, this is illustrated graphically by scaling the grey ¢
from -1 to +1.

¢

Cpmats from different tissues exhibit many similarities, as may be seen by comparing the Cpmats for connective tissue and musc]
in Figure 3. Thus, Cpmats by themselves do not allow reliable deductions to be made about unknown spectra. But reliability rﬂm
be greatly increased by subtracting the Cpmat of one tissue from the Cpmat of another tissue to create a matrix of differenc® ofs
cumulative probabilities, called a Depmat. The scalars in a Dcpmat may be called weightings. For example, if equivalent accumt 4 e
in Cpmats for connective tissue and muscle both have a value of 1, then subtraction of one Cpmat from the other canc€’® [0
weighting of this accumulator (1 - 1 = 0). Thus, features common to both matrices are cancelled and their weightings approach
while dissimilar features are enhanced to give stronger weightings as follows: 1 - (-1) = 2, and (-1) - 1 = -2.

338 45th ICoMST 1999




nm

p

C A Pmat for a single unknown spectrum
pmat CT Cpmat M collected from a carcass by the robot was

evaluated as follows. The Pmat of the
unknown spectrum was multiplied by the
Dcpmat for muscle minus connective
tissue. The scalars of the Pmat were
either -1 or 1 (rarely 0). The weightings
of the Depmat ranged from -2 to 2. If
the scalar and the weighting were both
negative then the product was positive,
for example, -1 * -2 = 2. Similarly, if
the scalar and the weighting were both
positive then the product was positive,
for example, 1 * 2 = 2. But the products
were negative if the scalar and weighting

differed in sign, for example, 1 * -2 = -
DCpmat CT-M Dcpmat M-CT 2. Thus, the sum of Pmat scalars
" multiplied by Dcpmat weightings
(Smuscie) 8ave a measure of the number
and importance of similarities between
the unknown Pmat and the Dcpmat,
with  non-matching features being
subtracted from matching features. This
operation was repeated for the inverse
case where the Dcpmat was derived by
subtracting a muscle Cpmat from a
connective tissue Cpmat. Thus, the final
probability for an unknown spectrum
originating from muscle was S /
(Smusclc s s

Figure 3

E]
CTHENBBnD

6 S B

£2,

5]
L Ja

muscle

non-musclc)-

nghe.mClhod gives reasonable but not perfect results when used in a practical application.(Swatland, 1998a).. Thref: good examples

be Ite connective tissue and very severe PSE pork were presented to the probe to dev;lo;? its Depmats. Then incoming spectrg could

riv:oned Wwith >85% accuracy in a few lines of matrix operationg. In other words, .thlS 51mple examp?e of case-based reasoning cag

sof‘\va € performance of a neural network, which is much more difficult and expensive to incorporate into home-made apparatus an
re.

e .
Peateq Probing to deal with sample heterogeneity

wvariabi“t}’ in meat quality between one location and another within the carcass pre§ents a formidat‘)le problem. If meat quality in the

tha? ® Of the carcass or side is assessed with a measurement at a single site, there is obvxqusly a risk of wrongly rejecting a carcass

oy 25 Poor meat quality restricted to the probe site, or of wrongly accepting a carcass with overgll.poor meat quality that happe_ns

meaave Teasonable meat at the probe site. When the probe is launghed by a prpgrammable rot?ot, it 1s possible to repeat the quality
Urements until a specified level of certainty is reached regarding the quality of the meat in the whole carcass.

a};}:s pOSSibility was investigated in an experiment psing 4_18 pork loins. The robot measured them a(lj] repe}:itive])[/. at sr;xoilct)f:;,r(r)nn(]):tngrg
ing t 1€ loin at 40 cm per second. For the sake.of sxmphmty, thet me_asurements were very slow, made with a grating . h,

Ing about 20 seconds at each site. But, in an industrial situation, we could use a photodiode array spectrometer tq obtain the
" almost instantaneously at each site (Swatland, 1998c). Overall, the robotic probe performed about as well as trained sorters
® Plant and as well as a laboratory technician with a pH probe measuring ultimate pH.

Pec
Iy th

p:lble 2. Simple (r) and multiple (R) correlations (P < 0.01) of meat quality traits with predictions made by trained sorters,
®asurements and a robotic probe (from Swatland, Uttaro, Goldenberg and Lu, 1998).

i

Sorter pH Robotic probe
Fy,..
d:F"d loss (bag | r =0.57 r=-0.61 r = 0.56 (670 nm)
) R = 0.76 (670, 560 & 540 nm)

P
L«a"’“ess (CIE |r=0.71 =-0.74 r = 0.75 (480 nm)
) R = 0.82 (480, 690 & 520 nm)
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The probe also had a limited capability to sort within the category of loins all deemed to be of one type by the human sorter- For
example, within 12 "normal" loins, probe measurements were correlated with the Japanese pork colour scores (JPCS) of Nakai et *
(1975), r =-0.71 (P < 0.01 at 700 nm).

It is widely known that the distribution of PSE meat in a pork carcass may be irregular, and that the postural muscles with 2 high
myoglobin content and normal appearance may create a "two-toned" effect when contrasted with adjacent phasic muscles with pSE:
From this common knowledge, one may extract a testable scientific hypothesis: that variance itself might be a predictor of PSE. Thls
was tested by calculating a coefficient of variation (CV) for each loin (at each wavelength, SD/mean). The CV was correlated with
fluid loss, r = -0.37 at 470 nm, and R = 0.62 adding 580 and 700 nm; with CIE L", r =-0.38 at 450 nm, and R = 0.68 adding 6
and 610 nm; and with JPCS, r = 0.40 at 460, and R = 0.67 adding 670 and 640 nm. The prediction of meat quality from the CV ‘{Vas
not far short of that obtained using reflectance. The practical significance of this finding is that the CV is a ratio, the determinati”

of which does not require accurate standardization or calibration of apparatus.

Thus, variability may not be such a serious problem if repetitive measurements can be made. As well as allowing averaging 0Ve'
wide sample base, repetitive measurements also allow heterogeneity to be used as an extra indicator of poor quality.

Vacuum-applied optical probes
Drop as sample

Figure 4 touched probe oty
Tube to vacuum pump 3 Robots are not the
= Soft pork pH, 5.23 novel way to Jaunch |
1.5 p— t 1
= ’ meat probe. Med i3
- Zig-zag from strokes relatively soft, and may

deformed by a Vacuun:
Thus, if an optical pl'obel
located within a vacu
tube, the signal from 3
probe changes as the me?

of vacuum pump _,

Illll

Firm pork pH, 6.37,

4

o /‘zﬁi

Fibre-optic probe

Reflectance
w

. . be’
Angled application tube _a”' - ‘_Il.sl L1 '_15' | 1:;1 :Vrvanwn o t;}ieg“j;e f
Vacuum kPa (Swatland, 1998b).

Combining optical and electrical probes

Electrical probes for PSE detection generally consist of a pair of parallel needles or blades inserted into exposed muscles O tgz
carcass. Optical probes, however, typically have a single spear with optical fibres opening on the side of the shaft. Can both meth®
be used simultaneously to improve the reliability of PSE predictions? One possibility is to mount optical fibres in parallel hypode”"le
needle electrodes, thus enabling simultaneous measurements of both optical scattering and electrical impedance in the same s
of pork. Light from a laser or a white source may be used to illuminate the meat through one needle, while scattered light is cOl]eCtee
by the other needle and measured with a photomultiplier. Without a sample in position, direct transmittance from one needle 1©
other is very low, because the receiving fibre is at the edge of the cone of illumination produced by the illuminating fibre.

This unusual method of making the optical measurements was not found to cause any major problems (Swatland and Uttaro, 1998)
For example, with 48 pork loins, transmittance of white light was correlated with CIE L*, r = 0.63, P < 0.01. But the method i$ i
sensitive to the anisotropy of muscle tissue. Skeletal muscle is composed of elongated fibres - essentially tubes of eleCll’Ol_
surrounded by membranes with high dielectric and reflective properties. These function as guides for both electrical currents and g ai
Thus, when muscle fibres are oriented with their long axes connecting the parallel needles, then electrical impedance is low and opti®
transmittance is high. Conversely, across the muscle fibre axes, impedance is high and transmittance is low (Swatland, 19973):

Y y A ) ) : cC
The parallel needle configuration is unattractive from a practical perspective, because the needles may be bent to change the dista”
between them, but it does offer some useful advantages, as explained next.

Optical path length

One of the major features of a fibre-optic probe used to measure meat quality is that the optical path length through the tisSue:S
unknown. Meat is composed of microstructural sources of scattering, predominantly the highly refractive myofibrils plus f
sarcoplasmic proteins that are precipitated by a low pH while the muscle is still near body temperature. Between these sourc® o
scattering, is a variable concentration of myoglobin, depending on the type of meat or muscle being measured. Thus, the two o uf
important factors determining the optical properties of meat are scattering and myoglobin concentration. Unfortunately, scattering &
becomes a problem when we attempt to measure myoglobin concentration, as in veal grading. While myoglobin concentration bec® i
a problem when we attempt to measure scattering, as in PSE detection. In general, scattering is best measured with a short light P
through the tissue, while chromophore concentration is best measured with a long path.

S

!

340 45th ICoMST 1999




1

b Tl e RS o0 R o s | TR S !

This problem was clearly revealed in an experiment undertaken to measure carotenoid pigment accumulation in the muscles of
gro“’ing fish (so as to control the nutrient supply of relatively expensive astaxanthin). To avoid damaging the fish, only a small probe
“uld be used, and the small probe had a short light path and was very sensitive to scattering. In fact, it was almost easier to detect
Sca“ering from myodegeneration in the absence of the beneficial effects of carotenoids than it was to measure carotenoid pigment
accumulation (Swatland, Darkin, Naylor, Caston and Mocia, 1998).

].f Needles for combined optical and electrical measurements are to be inserted into meat, one may as well incorporate force and
Stance transducers so that moving the needles apart or together may be used for rheological investigation of the meat, as shown in
'8ure 5. Thus, the needle tip may be used as a sensitive tool for all sorts of interesting experiments, such as testing the tensile strength
% meat i different directions (Figure 6) and for investigating the optical properties of meat. As two needles move apart there is a
.eometric relationship between path length and transmittance between the needles which obeys the photometric laws. But in meat, it
s""Tllally a straight line relationship because of scattering (Figure 7). The electrical impedance between the needles detects the
appf"af-?lnce of meat exudate as the meat is deformed (Figure 8).

Y Meat sample Figure 6
Figure 5

Rheological anisotropy

Hypodermic needles
used as electrodes

| DISTANCE ]

), § Z
mmm Transducer to §
§ O =
Tew-gear to M detect needle 7
thange needle @ >\ bending
®Paration
-
Lj » @ Spectrophotometry of
i tght Source launched the light transmitted @ -2 P -6 -8 :
? the optical fibre through the meat Separation mm
Figure 5 Figure 8
Needles moving together through meat,
using force transducer to correct for
needle bending
L 6 Electrical short from
E exudate as needles
L 8 — 5
¥ @ separate
g 5 Geometrical through empty space = 4
5§ 6 8
E s . S Electrical short from
E ] = Linear through meat k- > exudate as needles
N = close together
3 ' | |
9 O I 1Y 55 L
JSEERANEEY NNANERN % 25 G
8 .87 .14 .21 .28
Needle tip separation mm Separation mm
The fo

int, . rc€ and distance transducers connected to the needles allowed the prediction of needle tip separation within the meat, by taking
Wi dccount and correcting for the bending of the needles as they moved through the meat. But how else can we control the light path
Ut using parallel needles?

po -
larigeq light probes

I,?(;mr‘)“ing the light path through the meat from a single optical window is possible using polarisers. These need not be expensive.
€L, the best ones I have used were obtained from the eye-glasses used for a three-dimensional light show given by a visiting rock-

tyy Tol} _band in my local hotel. The high-quality polarisers obtained from optical supply companies are thick, rigid and d.ifﬁcult to

iuu'm_n Inexpensive polarising film is much easier to cut and glue over the optical W.meW ofa meat probe. Crosged polarisers over

figy Mating and receiving windows of a probe force a long light path through the tissue, by rejecting reflected light from the near

of . " favour of light depolarised by scattering from the far field (Figure 9). This is a useful technique, but it brings us within grasp
omﬂhing much more important - the detection of sarcomere length in bulk meat.
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Briefly, because this is a complex topic, it is well known that the sarcomere is compOSed ‘.
highly birefringent anisotropic or A bands, and less birefringent isotropic bands, or I banS
(Swatland, 1995). Note that the difference between A and I bands is one of relative magmt =
of birefringence - they are both optically anisotropic and birefringent. The Z line also
Near-field reDection bloeked bi.refringe-:nt (Eigure 10). Sarcomere length is easily measured with a polarising microscop?
with a thin strip of muscle illuminated with polarised light from a laser. A major problem w
making probe measurements on bulk meat is that we cannot easily rotate a polariser (the analys®
k against the surface of the meat. This is why a graded-index lens is necessary. A lens compo®
TN of ordinary glass will focus light by refraction. A graded-index lens is cylindrical in shap€ aﬂe
focuses light because the refractive index changes across the radius of the cylinder. Thus: -
graded index lens gives us a stationary window onto the meat, and allows the analyser t©
placed back in the body of the probe where it can be rotated by a stepper motor under compt®
control. This brings us right up to date. At the moment, my research on sarcomere leng
detection in bulk meat has been stopped by a formidable problem.

by the crossed-polariser over
the probe window

)

Overall birefringence increases as the e

o
sarcomere length decreases, but only until a
certain point. Once the thin filaments start to

overlap, and then when the thick filaments
encounter the Z line, the orderly arrangement
Far-field reflection accepted ©f protein filaments causing birefringence
because it is depolarised becomes disrupted so that birefringences
by extensive scattering decreases as the sarcomeres become severely
shortened. In summary, I can detect
Figure 9 moderately shortened sarcomeres but, in the
bulk state, severely shortened sarcomeres 2 e e T et L__-//l@
have similar optical properties to rest-length a T
sarcomeres. The method has, however, Micrometres
proved very useful for _further
experimentation on the causes of paleness in
PSE meat and in meat processing.

o

Birefringence

N M s P

Figure 10

The probe shown in Figure 11 uses a graded index lens to collect
the reflectance of initially polarised light and convey it back into
the body of the probe where there is a rotary analyser driven by a
stepper motor (Swatland, 1997b). This is because the rotary X

analyser cannot be mounted directly on the meat surface, and
because ordinary optical fibres depolarise light. Thus, if the light
is totally depolarised by the sample, rotating the analyser produces
no change in the light reaching the photomultiplier. If the probe is
directed at a mirror, so that all the light retains is original plane of

Light source One of six lig!l(
' 4 guides that w:,ugh
pass light th' J
polariser at &
of probe

Probe end view

=

P

Analyser,
a polariser

Py

polarisation, then rotation of the analyser produces a steep sine Graded-index lens m rotated by a

wave. Thus, the steepness of the sine wave from the meat sample receiving light . stepper motor :
gives the amount of reflected light retaining its original polarisation through a hole in

and, hence, the relative amount of light reflected from mirror-like the centre of the hed {
boundaries within the sample (Fresnel reflectance). One of the older front polariser S
theories of the causes of PSE pork was that low pH caused r

increased reflectance from the surfaces of myofibrils. No evidence Spectrophotometer

of this could be detected (Swatland, 1997b). To the contrary, $
dissolving the myofibrils with dilute sodium chloride solution, as g
in meat processing, caused an increase in the relative amount of Figure 11

polarised light reflected (Swatland and Barbut, 1999). g

Multi-channel probes

The probe shown in Figure 12 looks at connective tissue abundance and pyridinoline cross-linking from its UV fluorescence, a t::e
reflection of initially polarised light across the spectrum, and at the overall rheology of the meat. Quality traits of beef such 35 “¢
and tenderness are interrelated, so it is not surprising to find that measurements aimed at tenderness prediction (such 8 five
fluorescence for connective tissue) yield predictive information on meat taste (Table 3). For the excitation and detection of conn€ b
tissue fluorescence, light must penetrate the meat to some extent and, in doing so, may be secondarily affected by other factors: 5,0,15
as pH, lipid and myoglobin. Different attributes of meat quality often are interrelated, so why not exploit the cross-correl?
obtained with a multichannel probe?
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Tahle 3. Prediction of sensory attributes of beef quality Fibre-optic spectrophotometric
fom Multichannel probe measurements (from Swatland, probe with crossed polarisers
f0ks and Miller, 1998).

Figure 12

2311
- | ; RI{]
R Information
Tenderness without aging 0.58 Reflectance
3 days) Fluorescence m m
Rheology P L.*.J
Tendemess with aging 0.58 Rheology Depth detector yielding vector
I days) Reflectance measurements
Fluorescence a—— ” of tissue
Bl r _ ; r irregularities
AVour intensity without aging | 0.59 Reflectance =
ays Fl
) i 8 UV fibre-optic probe using
T a dichroic beam splitter
echnolOgy transfer 2

Traflsfe”ing probe and robot technology out into industry is more difficult than it might first appear. Everyone agrees that meat
elsil’")’ is imp(?rt.ant and everything po§sibl§ should be done to measure anq control it, but individuals ?!ways think that it. is someone
o § Tesponsibility. If meat production is based on the otherwise adm1rab1§ hard-yvork and ambition of countless mdependpnt

Ucers, then it will suffer from horizontal stratification and lack of vertical integration. Across each boundary, from the suppliers
o dimals anq feed, to the farmers who grow the animals, to the packers who slaughter them, to secondary processors, and eventually
Olesale and retail distributors of meat and processed products, there is an element of distrust and lack of long-term cooperation.
$ Which potentially might provide very useful feed-back and feed-forward information are of little commercial interest, because
formation would benefit someone else earlier or later in the chain of production. At the packing plant, there is little incentive
M the meat on the basis of tenderness, fluid loss, fatness or appearance because the temporary owner of the carcasses does not
10 know which carcasses have a low value: it is commercially more rewarding in the short-term to pass them all on as top value
SSes. Thus, technology transfer for meat quality probes requires some degree of vertical integration.

Obe
the j;,
S0
Wish
CarCa

References

%ai, H., F. Saito, T. Ikeda, S. Ando and A. Komatsu, A. 1975. Standard models of pork-colour. Bulletin of National Institute of
Animal Industry, Chiba. 29, 69-74.
nd, H.J. 1995. On-line Evaluation of Meat. Technomic Publishing, Lancaster, Pennsylvania.
nd, H.J. 1997a. Post-mortem changes in pork using parallel needles for both light scattering and low-frequency electrical
Properties. Food Research International 30: 293-298.
nd, H.J. 1997b. Internal Fresnel reflectance from meat microstructure in relation to pork paleness and pH. Food Research
International 30: 565-570.
and, H.J. 1998a. Recognition of spectra in the automated assessment of pork quality through single optical fibers. Food Research
International 31: 65-71.
and, H.J. 1998b. Pork softness assessed subjectively and objectively using vacuum-induced changes in reflectance. Journal of
SWat[ Muscle Foods 9: 339-349, . :
S“’at and, H.J. 1998c. Computer Operation for Microscope Photometry. CRC Press, Boca Raton, Florida.
and, H.J. and S. Barbut. 1999. Sodium chloride levels in comminuted chicken muscle in relation to processing characteristics
and Fresnel reflectance detected with a polarimetric probe. Meat Science, in press.

and, H.J., J.C. Brooks and M.F. Miller. 1998. Possibilities for predicting taste and tenderness of broiled beef steaks using an
Sy OPtical-electromechanical probe. Meat Science 50: 1-12.

land, H.J., F. Darkin, S.J. Naylor, L. Caston and R.D. Mocia. 1998. Muscle colour development in Arctic charr, Salvelinus alpinus
(L.), monitored by fibre-optics and electrical impedance. Aquaculture Research 29: 367-372.
d, H.J. and B. Uttaro. 1998. Optoelectrical assessment of pork quality using parallel hypodermic needles. Archiv fiir Tierzucht
SWa 41: 379-385. : \

and, H.J., B. Uttaro, A.A. Goldenberg and Z. Lu. 1998. Meat quality variation in the robotic sorting of pork loins. Journal of

Animal Science 76: 2614-2618.

SWatla
Wat]y

S"Vatla

SWall

sWatl

Swatl

sWatla

45th ICoMST 1999 343




