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Abstract

Robotic probes can navigate using ultrasonics. But, without navigation or with a high probe resolution, incoming data must be check^J 
for the type of tissue from which they originate. A method for this using a Boolean matrix is described. New methods a lso ^  
described for exploiting sample heterogeneity, measuring meat softness by vacuum application of fibre optics, combining electn > 
optical and rheological probes, using polarised light, and for multichannel probes. It is concluded that vertical integration within 
meat industry is a prerequisite for exploiting meat-quality probes.

Introduction

To be applicable in a practical situation, the on-line evaluation of meat quality must be fast enough to keep pace with processing 
speeds in major plants, and must be based on objective measurements (Swatland, 1995). Measurements must be non-contamm3^  
and relatively non-destructive. On-line evaluation of meat quality could improve the feed-back of information and financial incen 
to producers of high quality carcasses, could improve meat grading to allow reliable quality control procedures, and could enh 
profitability by allowing niche marketing and least-cost optimisation of meat processing. At present, meat quality evaluation °n'^.|j 
is at the threshold of being useful: but we still have a long way to go. This presentation of the most recent research findings 
examine some current problems and possibilities for future development.

Range of methods

There are numerous methods for on-line evaluation of meat quality, ranging from widely used methods for predicting meat y*e^ l y  
fat depth, to various experimental methods at the prototype stage of development. Some of the methods are listed in Table L 
will be familiar to the audience and need no further introduction.

Table 1. Some on-line methods for evaluating meat quality

Property Methods Quality attributes —

Subcutaneous fat depth Diode probes, 
Ultrasonics

Predict meat yield

Acidity, pH Glass electrode, 
Solid-state electrode

Paleness-darkness, fluid exudation, softness

Electrical impedance 2 or 4 electrodes, conductivity, 
capacitance, phase angle

Paleness-darkness, fluid exudation, softness

Muscle internal reflectance Fibre-optic spectrophotometry Myoglobin concentration, paleness-darkness_____

Fat internal reflectance Fibre-optic spectrophotometry Carotene yellowness, short-chain translucency

Connective tissue Depth probe for ultraviolet 
fluorescence

Amount and distribution of collagen and elastin, 
pyridinoline cross-linking of collagen __ _—

Rheology Electromechanical probes Toughness

Surface appearance Video image analysis Carcass shape (muscularity), rib-eye area and 
marbling, subcutaneous fat colour _____

Near infrared reflectance Fibre-optic and surface reflectometers Triglyceride content, collagen content

Emulsification in secondary 
processing

Electrical impedance, light scattering 
probe

Emulsifying capacity or state
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°f labour!? nTvf6 Pr°?v  have bcenvery successful in fat depth measurement for predicting the meat yield of pork. With the high cost 
and the repetitive nature of the task, however, hand-held probes are a prime candidate for automation. But automation creates

new problems. Obviously, cost is a factor 
when designing an automated probe. A 
smart, navigating robot is considerably more 
expensive and complex than a non­
navigating machine. Figure 1 shows a 
navigating robot developed by my colleague, 
Professor Andrew Goldenberg at the 
University of Toronto Robotics and 
Automation laboratory. It navigates 
ultrasonically, using transducers sliding over 
the pork carcass on water jets, and is able to 
steer itself to particular locations relative to 
the ribcage and split vertebral column. At a 
particular point, it probes the carcass to 
make a fat-depth measurement. At which 
time, meat quality measurements also may 
be made optically, using optical fibres to 
assess meat quality in an integrated volume 
of several cubic centimetres of muscle. Only 
rarely is the probe likely to stop and measure 
at an inappropriate location. Thus, with a 
navigating robot and a measurement made 
with low spatial resolution (integration 
through a relatively large volume), there is 
little need for recognition software to check 
that the measurement is from an appropriate 
location.

JJ^TER SUPPLY FOR JETS ON 
Tn CH THE ULTRASONIC 
'KANSDUCERS RIDE

ROBOT ARM MOVING DOWN 
THE CARCASS

EDGE DETECTOR FINDING VERTEBRAL 
COLUMN, AND ULTRASONICS 
FINDING AND COUNTING RIBS

the other extreme, however, consider a probe operated by a non-navigating robot that simply probes whatever tissue is placed inft
or of ‘t (hopefully not the human operator). The probe may strike a bone and go nowhere (stopped by a force overload cut-off), 
W)latI?ay got t0 an inappropriate location, attempting to measure meat quality within a seam of fat or connective tissue. Also, consider 
¡̂nd ap.pens ' f the diameter of the probe is reduced to allow easier penetration of a carcass with a hard, dry rind. Then the optical 

c°nt °iT 'n thC probe must be reduced as wel1- This increases the spatial resolution of the probe and decreases the volume of tissue 
itiap 1 utlnS t0 the integrated measurement. Now even a seam of marbling fat within a muscle at the correct target may yield an 
is fg j0priate spectrum for an assessment of meat quality. In other words, if the probe does not navigate, and if the probe diameter 

Uced, then it becomes necessary to check that an incoming spectrum is appropriate.

recognition
NiüraerOtie r erous sophisticated methods are available for recognizing images, and a spectrum is really a very simple image, comparable to 

. Sster hne o f a video image. But commercially available software is expensive and not easily incorporated into a probe system. 
' Problem was solved by using the Boolean interrelationships of the scalars within the vector of the spectrum (Swatland, 1998a).

(>
m,e; sider tlle spectrum for a blue filter glass in front of white opal glass (Figure 2). Violet to blue light from 400 to 470 nm is more 
110 6 *ban Sreen> yellow, orange and red light from 480 to 700 nm. This spectrum for a number of measurements from wavelength 
110 Was converted to a probability matrix called a Pmat and shown on the right of Figure 2. For reflectances from wavelength 
"'ave)1’ tbe Pm at is shown as a triangular matrix containing scalars, (n * (n-1)) / 2 , to store a comparison of reflectances at each 
c0rit ength compared with reflectances at all other wavelengths. For example, column 1 of the blue-filter Pmat shown in Figure 2 
2 0j-a'ns lhe results of comparing reflectance at wavelength 1 with reflectances at wavelengths 2 to n. As another example, column 
°f the 6 red~filter Pm at contains the results for wavelengths 3 to n. Finally, the Pmat triangle terminates on the right with comparison 
\vaVe® Penultimate with the ultimate wavelength, of wavelength 30 with 31, or 690 with 700 nm in this case. If reflectance at one 
by s ength is less than reflectance at another wavelength, a value o f -1 is assigned to the appropriate position in Pm at and illustrated 
1 js ld black in Figure 2. Conversely, if reflectance at one wavelength is greater than reflectance at another wavelength, a value of 
fr°tn fS'8ned t0 tbe aPProPriate position in Pmat, and this appears as a white area in Figure 2. With numerous decimal places derived 
to r u" analogue to digital conversion of the photometric signal, very rarely (if ever) is reflectance at one wavelength exactly equal 

lectance at another wavelength.
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Pmat of blue filter

Reflectance spectra of two glass filters

Red

Blue

Figure 2

This column compares reflectance at 400 B"1 
with reflectance at 30 other wavelengths 
from 410 to 700 nm

rThis column compares reflectance at 410 0"1 
with reflectance at 29 other wavelengths 
from 420 to 700 nm

White means >

Pmat of red filter

Black means <

This triangular matrix is used for demonstration purposes to explain and display the method of operation. In practice, the same & 
result is achieved with a vector. To display the concept for this lecture, a value o f +1 is shown by white, while a value o f -1 is sh°w” 
by black. Later on, we will use gray levels between white and black to illustrate intermediate values. Thus, the Pmats in Figure'  
are a Boolean representation of the actual spectra. There is some loss of information because, when the spectrum is recreated fr0111 
the Boolean matrix, there is a loss of grey levels and absolute values. But, a major advantage is gained because spectra can now ^  
easily manipulated. That is, they can be summed, averaged, and compared with other spectra strictly on the basis o f the shape 
spectrum - not using absolute values. Sharp-eyed members of the audience may note that reflectance at 670 nm for the red filter' 
just slightly higher than reflectance at 680 nm, yet there is no corresponding white cell in the bottom right comer of its Pmat, ^ ,c 
is solid black. This is because the method works best if spectra are smoothed before the Boolean matrix is created. After smooth^’ 
reflectance at 670 was less than at 680 nm.

r he
Having demonstrated the concept, we may now proceed to an application in accepting or rejecting spectra obtained by a probe- 1 

example shown in Figure 3 is for the separation of connective tissue (CT) from muscle (M) in pork. For each type of tissue’ 
cumulative probability matrix called a Cpm at was trained by adding the Pmats of known spectra. The scalars in a Cpmat may V 
called accumulators. Thus, the accumulators in a Cpmat become more negative if reflectance at a particular wavelength consist11 ^ 
is less than reflectance at another wavelength, while the accumulators become more positive if reflectance a particular w avelet 
consistently is higher than reflectance at another wavelength. However, accumulators for comparisons with a random outcome tefl 
towards zero. After a Cpmat is trained, the accumulators are divided by the number of spectra used for training. Thus, the maxifl11̂  
range for any accumulator in a completed Cpm at is from -1 to 1. In Figure 3, this is illustrated graphically by scaling the grey |evf 
from -1 to + 1.

Cpm ats from different tissues exhibit many similarities, as may be seen by comparing the Cpmats for connective tissue and muS'
in Figure 3. Thus, Cpmats by themselves do not allow reliable deductions to be made about unknown spectra. But reliability . 
be greatly increased by subtracting the Cpm at of one tissue from the Cpmat of another tissue to create a matrix of difference5 
cumulative probabilities, called a Dcpmat. The scalars in a Dcpmat may be called weightings. For example, if equivalent accurnul3 . _ 
in Cpm ats for connective tissue and muscle both have a value of 1, then subtraction of one Cpmat from the other caned5 
weighting of this accumulator ( 1 - 1 = 0 ) .  Thus, features common to both matrices are cancelled and their weightings approach 
while dissimilar features are enhanced to give stronger weightings as follows: 1 - (-1) = 2, and (-1) - 1 = -2 .

th6
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C pm at CT C pm at M

D cp m at M -C T

A Pmat for a single unknown spectrum 
collected from a carcass by the robot was 
evaluated as follows. The Pm at of the 
unknown spectrum was multiplied by the 
Dcpmat for muscle minus connective 
tissue. The scalars o f the Pm at were 
either -1 or 1 (rarely 0). The weightings 
of the Dcpmat ranged from -2 to 2. If 
the scalar and the weighting were both 
negative then the product was positive, 
for example, -1 * -2  = 2. Similarly, if 
the scalar and the weighting were both 
positive then the product was positive, 
for example, 1 *2  = 2. But the products 
were negative if the scalar and weighting 
differed in sign, for example, 1 * -2 = - 
2. Thus, the sum of Pm at scalars 
multiplied by Dcpmat weightings 
(Smusde) gave a measure of the number 
and importance of similarities between 
the unknown Pmat and the Dcpmat, 
with non-matching features being 
subtracted from matching features. This 
operation was repeated for the inverse 
case where the Dcpmat was derived by 
subtracting a muscle Cpmat from a 
connective tissue Cpmat. Thus, the final 
probability for an unknown spectrum 
originating from muscle was S , /

muscle '

The
Of

Them
H it h° d glV6S reasonable but not Perfect results when used in a practical application (Swatland, 1998a). Three good examples 
sorteHCOnneCtlVe tiSSUe and VCry SgVere PSE pork were Presented t0 the Probe to develop its Dcpmats. Then incoming spectra could 

rival th WUh >85% accuracy in a few lines of matrix operations. In other words, this simple example of case-based reasoning can 
s0ftware PerT°rmance of a neural network, which is much more difficult and expensive to incorporate into home-made apparatus and

Seated probing to deal with sample heterogeneity

^ole o f ty m me3t quality between one location and another within the carcass presents a formidable problem. If meat quality in the 
^at f̂ as *be oarcass or side is assessed with a measurement at a single site, there is obviously a risk of wrongly rejecting a carcass 
to have P° 0r meat quallty restricted to the probe site, or of wrongly accepting a carcass with overall poor meat quality that happens 
lheaSUr reasonable meat at the probe site. When the probe is launched by a programmable robot, it is possible to repeat the quality 

ements until a specified level of certainty is reached regarding the quality of the meat in the whole carcass.

tl 
k

^  -------------1   -------------------*‘ *~* »  V VVW1U UWV u J/UViWUlUUV t X k i a y  OpV/CUUUWlU IU UUldlll 111C

111 the nios  ̂ instantaneously at each site (Swatland, 1998c). Overall, the robotic probe performed about as well as trained sorters
C  n i a n t  a n H  o o  , w « 1 1  o o  o  1 „ 1 ----------- ------------ ‘ ‘ . . ________ t t

< P0Sf > » ty was investigated in an experiment using 48 pork loins. The robot measured them all repetitively at six sites, moving 
tak 6 ° 'n at 40 Cm per second- por tbe sake of simplicity, the measurements were very slow, made with a grating monochromator, 

sPectra about 20 seconds at each site. But, in an industrial situation, we could use a photodiode array spectrometer to obtain the 
tu  ̂most instantaneously at each site (Swatland lQ98r.  ̂ Overall the mhotir nmKp nKnnt oo «,<*11 00 _1 | \ , * ̂  ' Viuil, Ulb 1 Clou Llv

P ant and as well as a laboratory technician with a pH probe measuring ultimate pH.
r|>b|e ,

tt)c - &lmP,e (r) and multiple (R) correlations (P < 0.01) of meat quality traits with predictions made by trained sorters, 
asurements and a robotic probe (from Swatland, Uttaro, Goldenberg and Lu, 1998).

drÜ!d Ioss (bag

ness (CIE

Sorter

r = 0.57

r = 0.71

pH

r = -0.61

r = -0.74

Robotic probe

r = 0.56 (670 nm)
R = 0.76 (670, 560 & 540 nm)

r = 0.75 (480 nm)
R = 0.82 (480, 690 & 520 nm)

45 th ICoMST 1999 339



The probe also had a limited capability to sort within the category of loins all deemed to be of one type by the human sorter. F°r 
example, within 12 "normal" loins, probe measurements were correlated with the Japanese pork colour scores (JPCS) of Nakai eta- 
(1975), r = -0.71 (P < 0.01 at 700 nm).

It is widely known that the distribution of PSE meat in a pork carcass may be irregular, and that the postural muscles with a higj1 
myoglobin content and normal appearance may create a "two-toned" effect when contrasted with adjacent phasic muscles with 
From this common knowledge, one may extract a testable scientific hypothesis: that variance itself might be a predictor of PSE. This 
was tested by calculating a coefficient of variation (CV) for each loin (at each wavelength, SD/mean). The CV was correlated Wi 
fluid loss, r = -0.37 at 470 nm, and R = 0.62 adding 580 and 700 nm; with CIE L", r = -0.38 at 450 nm, and R = 0.68 adding 6 ' 
and 610 nm; and with JPCS, r = 0.40 at 460, and R = 0.67 adding 670 and 640 nm. The prediction of meat quality from the CV waS 
not far short of that obtained using reflectance. The practical significance of this finding is that the CV is a ratio, the determinati°n 
of which does not require accurate standardization or calibration of apparatus.

Thus, variability may not be such a serious problem if repetitive measurements can be made. As well as allowing averaging over3 
wide sample base, repetitive measurements also allow heterogeneity to be used as an extra indicator of poor quality.

Vacuum-applied optical probes

Figure 4
Tube to vacuum pump

Drop as sample

Robots are not the 011  ̂
novel way to launch 
meat probe. Meat 
relatively soft, and may 
deformed by a vacuu^ 
Thus, if an optical Pr0^e ' 
located within a vacUl! e 
tube, the signal from  ̂
probe changes as the m 
is drawn into the tube,  ̂
shown in Figure 
(Swatland, 1998b).

Combining optical and electrical probes

t|i6
Electrical probes for PSE detection generally consist of a pair of parallel needles or blades inserted into exposed muscles on 

carcass. Optical probes, however, typically have a single spear with optical fibres opening on the side of the shaft. Can both meth° 
be used simultaneously to improve the reliability of PSE predictions? One possibility is to mount optical fibres in parallel hypoderl1 
needle electrodes, thus enabling simultaneous measurements of both optical scattering and electrical impedance in the same samP 
of pork. Light from a laser or a white source may be used to illuminate the meat through one needle, while scattered light is collec(̂  
by the other needle and measured with a photomultiplier. Without a sample in position, direct transmittance from one needle to 
other is very low, because the receiving fibre is at the edge of the cone of illumination produced by the illuminating fibre.

This unusual method of making the optical measurements was not found to cause any major problems (Swatland and Uttaro, , 998)-
’ , gfj

For example, with 48 pork loins, transmittance of white light was correlated with CIE L*, r = 0.63, P < 0.01. But the method is v 
sensitive to the anisotropy of muscle tissue. Skeletal muscle is composed of elongated fibres - essentially tubes of electron 
surrounded by membranes with high dielectric and reflective properties. These function as guides for both electrical currents and nf ^ 
Thus, when muscle fibres are oriented with their long axes connecting the parallel needles, then electrical impedance is low and optlC 
transmittance is high. Conversely, across the muscle fibre axes, impedance is high and transmittance is low (Swatland, 1997a)-

The parallel needle configuration is unattractive from a practical perspective, because the needles may be bent to change the distal 
between them, but it does offer some useful advantages, as explained next.

iiice

Optical path length

One of the major features of a fibre-optic probe used to measure meat quality is that the optical path length through the t' ssÛ 1y 
unknown. Meat is composed of microstructural sources of scattering, predominantly the highly refractive myofibrils plllS f 
sarcoplasmic proteins that are precipitated by a low pH while the muscle is still near body temperature. Between these sourcsS 
scattering, is a variable concentration of myoglobin, depending on the type of meat or muscle being measured. Thus, the two n ^ s 
important factors determining the optical properties of meat are scattering and myoglobin concentration. Unfortunately, scattering1 ^  
becomes a problem when we attempt to measure myoglobin concentration, as in veal grading. While myoglobin 
a problem when we attempt to measure scattering, as in PSE detection. In general, scattering is best measured 
through the tissue, while chromophore concentration is best measured with a long path.

concentration oe^   ̂
with a short lig'11 F
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Th'
grow' Pr° blem was clearly revealed in an experiment undertaken to measure carotenoid pigment accumulation in the muscles of 
couldvf flSh (S° 3S t0 COntro1 the nutrient supply of relatively expensive astaxanthin). To avoid damaging the fish, only a small probe 
sea., °e used’ and the smal1 Probe had 3 short hght Path and was very sensitive to scattering. In fact, it was almost easier to detect 
ac n from myodegeneration in the absence of the beneficial effects of carotenoids than it was to measure carotenoid pigment 

adulation (Swatland, Darkin, Naylor, Caston and Mocia, 1998).

If n
(j,s,needles for combined optical and electrical measurements are to be inserted into meat, one may as well incorporate force and 
Fi J?nCe transducers so that moving the needles apart or together may be used for rheological investigation of the meat, as shown in 
C  5; Thus’ the needle [1P may be used as a sensitive tool for all sorts of interesting experiments, such as testing the tensile strength 
ge eat m deferent directions (Figure 6) and for investigating the optical properties of meat. As two needles move apart there is a 
is vmetnc relationship between path length and transmittance between the needles which obeys the photometric laws. But in meat, it 
aDn'rtUally a straight line relationship because of scattering (Figure 7). The electrical impedance between the needles detects the 

| earance of meat exudate as the meat is deformed (Figure 8).

P'§Ure 7
Needles moving together through meat, 
using force transducer to correct for 
needle bending

Figure 8

Y Needle tip separation mm Separation mm
'he rn
"»to ac" 6 ^  d!stance transducers connected to the needles allowed the prediction of needle tip separation within the meat, by taking
'Vithom°Unt 3nd correctln§ for the bending of the needles as they moved through the meat. But how else can we control the light path 

ut using parallel needles? F

■sed light probes

C 1'1" ! the llght Path through the meat from a single optical window is possible using polarisers. These need not be expensive. 
irid'ro|i u bSSt ° neS 1 haVC USCd W6re obtamed from tbe eye-glasses used for a three-dimensional light show given by a visiting rock­
et. ^  . and in my local hotel. The high-quality polarisers obtained from optical supply companies are thick, rigid and difficult to 
\n , i  lnexPens’ve polarising film is much easier to cut and glue over the optical window of a meat probe. Crossed polarisers over 

j a,lng and receiving windows of a probe force a long light path through the tissue, by rejecting reflected light from the near 
°f s0rT f V° Ur ° f llght dePo'arised by scattering from the far field (Figure 9). This is a useful technique, but it brings us within grasp 

e'hing much more important - the detection of sarcomere length in bulk meat.
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Near-field reflection blocked 
by the crossed-polariser over 
the probe window

" a

\  /o --------o

Far-field reflection accepted 
because it is depolarised 
by extensive scattering

Figure 9

Briefly, because this is a complex topic, it is well known that the sarcomere is compos' 
highly biréfringent anisotropic or A bands, and less biréfringent isotropic bands, or I bar7  
(Swatland, 1995). Note that the difference between A and 1 bands is one of relative magn>tu e 
of birefringence - they are both optically anisotropic and biréfringent. The Z line also >s 
biréfringent (Figure 10). Sarcomere length is easily measured with a polarising microscope °r 
with a thin strip of muscle illuminated with polarised light from a laser. A major problem wlt 
making probe measurements on bulk meat is that we cannot easily rotate a polariser (the analyse, 
against the surface of the meat. This is why a graded-index lens is necessary. A lens comp°s<

an1)
the
be

of ordinary glass will focus light by refraction. A graded-index lens is cylindrical in shape 
focuses light because the refractive index changes across the radius of the cylinder. Thus, 
graded index lens gives us a stationary window onto the meat, and allows the analyser t( 
placed back in the body of the probe where it can be rotated by a stepper motor under comp11̂  
control. This brings us right up to date. At the moment, my research on sarcomere leI)® 
detection in bulk meat has been stopped by a formidable problem.

Overall birefringence increases as the 
sarcomere length decreases, but only until a 
certain point. Once the thin filaments start to 
overlap, and then when the thick filaments g 
encounter the Z line, the orderly arrangement m 
of protein filaments causing birefringence 
becomes disrupted so that birefringences £ 
decreases as the sarcomeres become severely (5 
shortened. In summary, I can detect 
moderately shortened sarcomeres but, in the 
bulk state, severely shortened sarcomeres 
have similar optical properties to rest-length 
sarcomeres. The method has, however, 
proved very useful for further 
experimentation on the causes of paleness in 
PSE meat and in meat processing. Figure 10

The probe shown in Figure 11 uses a graded index lens to collect 
the reflectance of initially polarised light and convey it back into 
the body of the probe where there is a rotary analyser driven by a 
stepper motor (Swatland, 1997b). This is because the rotary 
analyser cannot be mounted directly on the meat surface, and 
because ordinary optical fibres depolarise light. Thus, if the light 
is totally depolarised by the sample, rotating the analyser produces 
no change in the light reaching the photomultiplier. If the probe is 
directed at a mirror, so that all the light retains is original plane of 
polarisation, then rotation of the analyser produces a steep sine 
wave. Thus, the steepness of the sine wave from the meat sample 
gives the amount of reflected light retaining its original polarisation 
and, hence, the relative amount of light reflected from mirror-like 
boundaries within the sample (Fresnel reflectance). One of the older 
theories o f the causes of PSE pork was that low pH caused 
increased reflectance from the surfaces of myofibrils. No evidence 
of this could be detected (Swatland, 1997b). To the contrary, 
dissolving the myofibrils with dilute sodium chloride solution, as 
in meat processing, caused an increase in the relative amount of 
polarised light reflected (Swatland and Barbut, 1999).

Probe end view

l l

Light source 
*

One of six I'S®. 
guides that 
pass light thri^ 
polariser at 
of probe

Graded-index lens 
receiving light 
through a hole in 
the centre of the 
front polariser

Analyser, 
a polariser 
rotated by a 
stepper motor

©
Spectrophotometer

Figure 11

M ulti-channel probes

th6
The probe shown in Figure 12 looks at connective tissue abundance and pyridinoline cross-linking from its UV fluorescence, at^ (£. 

reflection of initially polarised light across the spectrum, and at the overall rheology of the meat. Quality traits of beef such as ^  
and tenderness are interrelated, so it is not surprising to find that measurements aimed at tenderness prediction (such aS . ,e 
fluorescence for connective tissue) yield predictive information on meat taste (Table 3). For the excitation and detection of conI]eCüCti 
tissue fluorescence, light must penetrate the meat to some extent and, in doing so, may be secondarily affected by other factors, } 
as pH, lipid and myoglobin. Different attributes of meat quality often are interrelated, so why not exploit the cross-corre'3 
obtained with a multichannel probe?
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^ble 3. Prediction of sensory attributes of beef quality 
B°m Multichannel probe measurements (from Swatland, 
r°°ks and Miller, 1998).

Fibre-optic spectrophotometric 
probe with crossed polarisers Figure 12

R Information

enderness without aging 
(3 days)

0.58 Reflectance
Fluorescence
Rheology

>
enderness with aging 

■ 1 days)
0.58 Rheology

Reflectance
Fluorescence

Pj
, av°ur intensity without aging 

^_days)
0.59 Reflectance

Fluorescence

I

Œ

Depth detector yielding vector
measurements 
of tissue 
irregularities

I'
ecbnology transfer

UV fibre-optic probe using 
a dichroic beam splitter

qUal'. ferring probe and robot technology out into industry is more difficult than it might first appear. Everyone agrees that meat . “ lly is f ■ ■ • ..........................

fences

lransfer

else’ J ,mPortant and everything possible should be done to measure and control it, but individuals always think that it is someone 
Pro/ resP°nsibility. If meat production is based on the otherwise admirable hard-work and ambition of countless independent 
ofa Ucers’ tben it will suffer from horizontal stratification and lack of vertical integration. Across each boundary, from the suppliers 
to J!lrnals and feed. to the farmers who grow the animals, to the packers who slaughter them, to secondary processors, and eventually 
f>rob 0lesa,e and retail distributors of meat and processed products, there is an element of distrust and lack of long-term cooperation. 
the ,e’r Whlch Potentially might provide very useful feed-back and feed-forward information are of little commercial interest, because 
l0 niormation would benefit someone else earlier or later in the chain of production. At the packing plant, there is little incentive 

meat on tbe bas*s ° f  tenderness, fluid loss, fatness or appearance because the temporary owner of the carcasses does not 
^rc t0 kn° W Which carcasses have a low value: ‘t is commercially more rewarding in the short-term to pass them all on as top value 

asses. Thus, technology transfer for meat quality probes requires some degree of vertical integration.
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