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PREDICTION OF H+ CONCENTRATION IN FRANKFURTERS USING NEURAL NETWORK DURING COOKING 

G.S. Mittal and J. Zhang

School of Engineering, University of Guelph, Guelph, Ontario, Canada N IG 2 WI 

Background.
Meat pH is important as it affects color, bacterial growth, and water holding capacity (WHC). Acceleration of cured meat color 
development is encouraged by a decrease in tissue pH. Bacterial growth is considerably reduced if pH of meat is below 5.6. An increase 
in pH raises WHC. pH change due to heating of meat has been investigated (Kauffman el al., 1964). Meat pH influences WHC, texture 
and tenderness (Dutson, 1983). Boakye and Mittal (1993) reported positive correlations between pH and press juice and cooking loss. 
During cooking of frankfurters, pH increased by 0.15 unit from 6.10 to 6.25 in the 30 to 70°C range (Correia and Mittal, 1991).

Objective.
The objective is to develop an ANN to predict dynamics of hydrogen ions during thermal processing of a meat emulsion, with a frankfurter 
geometry, for simplicity, convenience and fast calculations, so that corrections can be made in process conditions in real time.

Methods.
Modelling and simulation: Hydrogen ion transport during meat emulsion processing is due to bulk diffusion with water, molecular 
diffusion and chemical reactions. The following mathematical equations were developed (Mittal and Blaisdell, 1982a,b): Initial and 
boundary conditions: CIH (r, 0) = CIH0; C1H’ (0, t) = 0; CIH’ (R, t) = 0; diffusion of ions = -D1H. A. d ClH/dr; convection of ions = CIH. 
A Dm dC/dr; accumulation = V CIH’ ; and rate of depletion = KR (CIH - CIHE) A. The space coordinate was eliminated as a variable 
by dividing the cylinder into ten concentric shells. For node 1:
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C = (m - me)/(mr  m j; ny= -0.102 ln[-Re FP (T + 5.665) ln(RH)] /(1.J32E7); D,„ = exp(8.679 + 0.135 FP -4341.5/ T„bs + 8.55C)

These equations were solved on a digital computer using the 1S1M digital simulation language (Dunn et al., 1992). The model for the 
equilibrium pH was given as (Mittal and Blaisdell, 1982a):
pHe = 0.0113 Tahs exp((4.131E-3 + 2.329E-3 RH) FP + 148.9/ Tabs); and KR = 785.11 T,bs exp(-0.133 FP-3935/T lbs)
These models were extensively validated by Mittal and Blaisdell ( i 982a) against experimental data. The normalized standard deviation 
between predicted and experimental concentrations varied from 0.068E-6 to 0.222E-8 mol/L. The maximum deviation was 0.015 pH unit.

Data Generation and Neural Network Model: For data generation, 8 parameters were used for inputs (Table 1), 40500 sets o f data were v
generated. Three slab hidden layered “Ward nets” (Ward System Group, Inc., Frederick, MD) were developed to predict the hydrogen 
ion mobility (Fig. 1). Eight nodes in the input layer represented 8 input parameters, and two nodes in the output layer represented CIH, 
and CIHa. ANN software used was NeuroShell 2 (Ward System Group, Inc., Frederick, MD) on a computer (Pentium 11,400 MHz).

Results and discussions.
From the generated data (40500 sets), 8100 each were randomly selected as testing and production sets, respectively. The remaining 24300 
were used for ANN training. Both learning rate and momentum were set at 0.5. Comparing production results (Table 2), ANN with 10-10- 
1 Oliidden nodes provided the lowest mean and maximum absolute errors, and mean and maximum relative errors. Maximum relative errors 
for predicting CIH | and CIH, were 1.71%. For all of predictions, mean absolute errors were < 0.006E-6 and maximum absolute errors were 
<0.03E-6. The highest mean relative error was 0.549%. All of predictions provided higher accuracy. ANN with a learning rate of 0.5 and 
a momentum of 0.3 achieved the best prediction results. This combination provided the lowest mean and maximum absolute errors, and 
mean relative errors for predicting CIH, and CIHa. This combination has not provided the lowest relative errors for predictions because 
a learning rate of 0.9 and a momentum of 0.3 provided the lowest maximum relative errors. However, selected combination provided the 
largest percentage of data within 1 % error (99.4%) for predicting CIH,. For predicting CIH,, selected combination provided good results 
among all the combinations. The maximum absolute error for the prediction of CIH, was 0.013 E-6. The mean relative error was only 0.2%. 
The importance of an input variable to ANN prediction was compared by the sum of its connecting weights (Fig. 2). The t. T„ CIH0 and 
FP were important to the predictions. The m, and T, did not affect the predictions. After neglecting ni; and T ,, the remaining 6 inputs were 
used to predict, but predicted CIH, did still follow calculated CIH, very well as maximum absolute and relative errors were 0.0191 E-6 
and 2.71%, respectively. However, the mean absolute and relative errors were only 0.37E-6 and 0.33%, respectively.
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Conclusions.

Predicting hydrogen ion mobility during frankfurter cooking by “Ward nets” ANN using simulation data is a simple, convenient and 
acc»rate method. Prediction errors could be reduced by careful selection of hidden nodes and appropriate combination of learning rate 
and momentum. The maximum absolute error for prediction of CIHa was 0.013E-6 mol/L. The mean relative error was only 0.2%. The 
*’ P»' CIH0 and FP were important to the outputs. Inputs M, and T, did not affect the predictions.

Cist of Symbols.
A = cross sectional area of the slab, n r ; C = concentration of water, dimensionless; C1H = concentration of ion. mol/L 
UHE = equilibrium concentration of ion, mol/L; C1H0 = initial concentration of ion, mol/L; Dm = moisture diffusivity, nr/li 
“ iH = diffusivity of ion, nr/h; FP = fat-protein ratio; KR = reaction rate constant, 1/h; m = moisture content, decimal db 
P ~ frankfurter radius, m; r = radial distance, m; Rg = gas constant, J/(kg.mol.K); RH = relative humidity, decimal 
£ = coefficient of determination; T = temperature, °C; t = time, h; V = volume, m3; Ar = radial interval between nodes, m 
Subscript: 1-10 = node number; a=  ambient, average; abs = absolute; e = equilibrium; i = initial; n = node number.
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^  c i . input variables and their values for ANN training

-p—__ Input variables Values for data generation
'°cessing time (t), h 
at Protein ratio (FP)

jn'tial moisture content (mi), decimal db 
'Wial temperature (Ti), °C 
bibient temperature (T J , °C 
adius o f frankfurter (R), m 
cla,lve humidity (RH), decimal

“¿¡¿ial concentration o f  hydrogen ion (CIH0), mol/L

0.25, 1.00, 1.75,2.50,3.25 
1 ,2 .3

1.6, 2.0, 2.4 
4, 7, 10
50, 60, 70. 80. 90 
0.01,0.02. 0.03,0.04. 0.05 
0.50,0.65. 0.80. 0.95

0.25H-5,0.30E-5, 0.35E-5

Prediction errors o f  CIH, and CIHa

^°des ip hidden layer 
" ard nets) ->

8-8-8 10-10-10 12-12 -12 14- 14-14

CIH, CIHa CIH, CIHa CIH, Cilia CIH, CIHa
ean absolute error, mol/L 
aximum absolute error, mol/L 
ean relative error, % 
aairnum relative error, %

*) pCrccnt within 1 % error

0.004E-6 0.004E-6 0.003E-6 0.003E-6 0.004E-6 0.003E-6 0.004E-6 0.004E-6
0.019E-6 0.0I7E-6 0.015E-6 0.0I4E-6 0.017E-6 0.0I8E-6 0.02 IE-6 0.02 IE-6

0.42 0.40 0.27 0.23 0.32 0.31 0.31 0.29
2.52 2.34 1.71 1.70 2.09 2.59 2.27 2.70
92.1 93.2 98.9 99.8 97.2 98.4 97.7 98.2

|,ercent within 1% to 2% error 7.5 6.5 1.1 0.2 2.7 1.4 2.2 1.6
*-^.rceri1 within 2% to 3% error 0.4 0.3 0 0 0.1 0.2 1.1 0.2

'  ~ 0.9999 for all treatments
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Fig. 2 Importance of input variables

46th ICoMST 2000 •  255




