SEVERAL BACTERIOCINS ENHANCE THE BACTERICIDAL EFFECT OF HIGH HYDROSTATIC PRESSURE AGAINST FOODBORNE PATHOGENS IN A MEAT MODEL

Garriga, M., Aymerich, T., Costa, S., Monfort, J.M. & Hugas, M.

Institut for Food and Agricultural Research and Technology (IRTA). Meat Technology Center. 17121 Monells (Girona).

Background

6.I - P7

The effectiveness of high hydrostatic pressure on the destruction of cells of several foodborne pathogens in phosphate buffer and in some foods has been published (Shigehisa *et al.*, 1991, Styles *et al.*, 1991, Patterson & Kilpatrick, 1998). Complex, low-acidity food matrices, such as meat and milk, tend to protect bacteria against high pressure inactivation compared with phosphate buffer. In general, the higher the pressure and time of treatment the higher the bacterial destruction. However, several foods like meat products with a high content of proteins are not suitable to be treated at a very high pressure without altering their structure and color. For this reason it will be necessary to combine other hurdles, as for example in a four-dimensional process, including: pressure x time x temperature x antimicrobial preservatives (Kalchayanand *et al.*, 1998). Bacterial cells surviving pressurization become sublethally injured and are killed by antibacterial compounds as bacteriocins; thus viability loss of foodborne pathogens may be increased in the presence of bacteriocins and consequently the shelf life of the pressurized products extended.

Objectives

The aim of this study was to assess the effect of high hydrostatic pressure in combination with bacteriocins on the behaviour of several foodborne pathogens in a meat model system, during storage at 4°C.

Methods

A model meat system was designed consisting of cooked ham homogenized with distilled water (1:3) distributed in plastic pouches containing bacteriocins as follows: Enterocins A,B, Sakacin K, Pediocin AcH, Nisin (Nisaplin) and a Control with no added bacteriocin. Each bacteriocin was added independently at 1280 AU/g. The titer was determined against *Listeria innocua* CTC1014 or against *Lactobacillus sake* CTC746 for Nisaplin. Each plastic pouch was inoculated to a final concentration of 10⁸ CFU/g of an stationary phase culture of each selected strain. The strains tested were *Escherichia coli* CTC1007, CTC1018, CTC1023; *Salmonella* spp. CTC1003, CTC1015; *Staphylococcus aureus* CTC1008, CTC1019, CTC1021 and *Listeria monocytogenes* CTC1010, CTC1034. All strains were from meat origin.

The samples were vacuum sealed, pressurized at 400 MPa at 17°C for 10 minutes (Alstom, Nantes, France) and stored at 4°C for up to 61 days. At selected sampling times CFU were enumerated. Plating was done in selective media.

Results and Discussion

Limited studies have indicated that among the foodborne pathogens, some strains could be more resistant to high pressure than others. For this reason, different strains from the same species were used in this study. *E.coli* and *Salmonella* strains showed a different behaviour during the storage after pressurization. The results obtained will be useful for designing, in the future, processing parameters to ensure the safety of pressurized foods.

In general, the high pressure treatment at 400 MPa at 17°C for 10 minutes diminished the viable counts of bacteria about 6 log cycles, except when the target strains were *S. aureus* (Tables 1&2). However, the survivors outgrew during the storage at 4°C, except *Salmonella* (all treatments) or *E. coli* when nisin was included. When *Listeria monocytogenes* was used as a target strain, the survivors after pressurization dramatically recovered till the level of inocula (10° CFU/g) except when Sakacin K, Enterocins A,B or Pediocin AcH were included. The counts remained under the detection limit (2 log CFU/g) till 46 days.

Conclusion

The addition of selected bacteriocins increased the lethal effect of moderate (400 MPa) high pressure. In hydrostatic pressurepasteurization of foods, the combination of factors in order to obtain high levels of destruction of pathogens will be the key to ensure safety of the consumers.

References

Kalchayanand, N., Sikes, A., Dunne, C. P. & Ray, B. (1998). Factors influencing death and injury of foodborne pahogens by hydrostatic pressure-pasteurization. *Food Microbiol.* 15, 207-214.

Patterson, M. F. & Kilpatrick, D. J. (1998). The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. J. Food Protect. 61, 432-436.

Shigehisa, T., Ohmori, T., Saito, A., Taji, S. & Hayashi, R. (1991). Effects of high hydrostatic pressure on characteristics of pork slurries and inactivaton of microorganisms associated with meat and meat products. *Int. J. Food Microbiol.* 12, 207-216.

Styles, M.F., Hoover, D.G., & Farkas, D.F. (1991). Response of *Listeria monocytogenes* and *Vibrio paraemolyticus* to high hydrostatic pressure. J. Food Sci. 56, 1404-1407.

Acknowledgements

This work was supported by project ALI 98-0709 from the Comisión Interministerial de Ciencia y Tecnologia (CICYT).

A CY MACHINE	0	1 day	4 days	7 days	11 days	18 days	26 days	46 days	61 days
Escherichia co	oli CTC1018								4
Control	7.59	4.32	4.62	4.94	5.55	4.85	5.72	5.42	5.80
Ent A, B	7.59	3.48	4.57	5.47	5.07	4.91	5.41	7.47	6.94
Sak K	7.59	4.50	4.91	5.07	4.85	4.77	5.12	5.80	5.47
Ped AcH	7.59	3.42	4.13	4.56	4.29	4.52	5.93	8.73	8.67
Nisin	7.59	1.99	1.99	2.24	2.30	2.50	2.39	2.77	3.98
Escherichia co	li CTC 1007	102 CHORES		Letter Charles	S. Sheart S.S.				5170
Control	7.46	2.00	3.75	3.95	4.39	3.74	3.85	3.54	2.30
Ent A, B	7.46	2.00	3.45	3.33	3.86	3.35	6.62	6.99	7.04
Sak K	7.46	3.36	3.45	3.78	4.28	3.72	4.13	5.79	5.33
Ped AcH	7.46	2.58	3.37	3.39	3.30	3.54	3.67	3.00	2.59
Nisin	7.46	1.99	2.00	1.99	1.99	1.99	1.99	1.99	1.99
Escherichia co	li CTC1023	and the first	Stand Store						
Control	8.16	3.68	3.54	4.40	5.02	3.69	3.59	4.60	3.50
Ent A, B	8.16	2.30	3.19	4.16	4.53	3.60	4.23	4.16	3.25
Sak K	8.16	4.34	3.64	4.73	5.04	4.38	4.48	5.24	4.46
Ped AcH	8.16	4.20	3.73	4.36	4.12	3.91	4.29	4.67	4.04
Nisin	8.16	2.00	1.99	1.99	1.99	1.99	1.99	1.99	1.99
Salmonella CI	C1003				San				
Control	7.62	1.99	2.35	2.52	3.40	3.20	3.34	2.42	2.24
Ent A, B	7.62	1.99	2.45	2.63	2.99	2.89	2.69	2.30	1.99
Sak K	7.62	1.99	1.99	2.00	2.15	2.30	2.15	2.00	1.99
Ped AcH	7.62	1.99	1.99	2.00	2.00	2.00	2.15	2.00	2.00
Nisin	7.62	1.99	1.99	1.99	1.99	2.00	1.99	1.99	1.99
Salmonella CI	°C1015	before to de	Sa anoviversa	and bettered		Linking and	a weak much	n self - lesso	SIGW RIGH
Control	7.49	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99
Ent A, B	7.49	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99
Sak K	7.49	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99
Ped AcH	7.49	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99
Nisin	7.49	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99

Values are expressed in log₁₀ CFU/g. Values are the average of duplicate.

r y h

it x d

1 t

D

0

	ehaviour of ba	1 day	4 days	7 days	11 days	18 days	26 days	46 days	61 days
Staphylococcu	s aureus CTC	1008	April 2 and	1.0.48 10 14	nitod Strik Ja	all and the	1750, 201, Q.1, 30	RADE TO THE PARTY	
Control	8.51	7.93	8.21	8.18	7.90	7.98	7.92	7.19	6.51
Ent A, B	8.51	8.65	8.36	8.29	8.29	8.07	8.00	7.65	6.46
Sak K	8.51	8.46	8.42	8.24	8.24	8.01	8.07	7.68	6.86
Ped AcH	8.51	8.35	8.23	8.45	8.16	8.16	7.82	7.51	6.64
Nisin	8.51	8.21	7.63	7.79	8.33	7.39	7.30	6.90	6.08
Staphylococcu	s aureus CTC	1019	Shin Lord De	C. S.	and a stranger	in the heat has	enter hillers which	a laboration and the second	
Control	8.13	7.77	8.25	8.34	8.09	8.15	8.16	7.93	7.47
Ent A, B	8.13	7.88	8.16	8.15	8.15	8.03	8.00	7.57	7.05
Sak K	8.13	8.11	8.31	8.35	8.31	8.23	8.11	7.93	7.49
Ped AcH	8.13	8.02	8.20	8.39	8.18	8.24	8.16	7.59	7.33
Nisin	8.13	8.05	7.98	8.19	8.00	7.66	7.46	7.01	6.66
Staphylococcu	s aureus CTC	1021	A DELL'ARRENT DE L	N Yata and Carl	SADER TO S	Constant of the			
Control	8.45	8.19	8.06	8.44	8.02	8.18	8.00	7.91	7.22
Ent A, B	8.45	8.18	8.39	8.54	8.37	8.37	8.18	7.86	7.48
Sak K	8.45	8.45	8.22	8.44	8.30	8.40	8.25	7.92	7.32
Ped AcH	8.45	8.08	8.34	8.59	8.41	8.36	8.26	7.95	7.40
Nisin	8.45	8 40	8.08	8.33	8.15	8.19	7.99	7.21	7.11
Listeria monoc	cytogenes CTC	1010			1				
Control	8.44	2.00	2.63	3.05	3.66	5.13	7.47	8.39	9.22
Ent A, B	8.44	1.99	1.99	1.99	1.99	1.99	1.99	1.99	2.35
Sak K	8.44	1.99	1.99	1.99	1.99	1.99	1.99	1.99	3.59
Ped AcH	8.44	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99
Visin	8.44	1.99	1.99	1.99	2.00	3.30	5.30	7.79	9.36
Listeria monoc	ytogenes CTC	1034	Out need of	Distantial Alle	and the tests	2010 COLORS	ALLER ROULES	and pressed	Den G. L
outrol	8.27	1.99	1.99	2.43	3.70	6.14	8.67	9.33	9.43
Ent A, B	8.27	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99
sak K	8.27	1.99	1.99	1.99	1.99	1.99	1.99	2.00	1.99
ed AcH	8.27	1.99	1.99	1.99	1.99	1.99	1.99	1.99	3.33
Visin	8.27	1 00	1 00	215	215	3.62	6.32	8.88	9.53

^{alues} are expressed in log₁₀ CFU/g. Values are the average of duplicate.

6.I - P7