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Background

Food microbiology has been applying mathematical concepts and techniques at an increasing rate. This is partly due to the demand to 
analyse microbial data, partly due to the dramatic development o f the mathematical, computational means to process those data, 
improving in both quality and quantity. With the advent of desktop computers having greater power than top-range mainframe 
computers one or two decades ago, it has become possible to solve large and complex numerical problems with sufficient accuracy. 
This is especially important in food microbiology where, because of the inherent bio-diversity, observations and measurements are 
generally less accurate than in physical sciences.

According to the definition of Ross at al (1999): "Predictive microbiology is concerned with the quantitative microbial ecology o f  <
foods ... (i.e.) with growth, survival and death o f  bacteria andfungi in foods. Its basic hypothesis is that the responses o f  i
populations o f  micro-organisms to environmental factors are reproducible and that, by characterising environments in terms o f  those |
factors that most affect microbial growth and survival, it is possible, from  past observations, to predict the responses o f  those micro­
organisms in other, similar, environments. This knowledge can be described and summarised in mathematical models which can be t
used to predict quantitatively the behaviour o f  microbial populations in foods, e.g. growth, death, toxin production, from  a  
knowledge o f  the environmental properties o f  the fo o d  over time. “ \

(
These indicate that mathematical modelling and computational techniques are going to play a key role in the future improvements of 
the microbiological safety of meat. In what follows, some aspects of this development will be discussed. t

I
Objective

i

A ready-to-use predictive model is based on a database of observations and a set of suitable mathematical models:

DATABASE ------------------
PREDICTIVE SOFTWARE

MATHEMATICAL M ODELS------

In what follows, we show the typical features of the process of creating and validating predictive models of microbial growth in food 
and demonstrate their overall performance in meat products.
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Methods

a
a

1. DATABASE ' ^
A well-organised database of observations and measurements is o f primary importance in predictive microbiology. Mathematical 
models can (and does) improve, sometimes in months, but it’s very difficult to improve stored data retrospectively. P
A database is not merely a dump of data. Its syntax and semantics must be well defined to keep its integrity. Below an example is given .. 
for such a database.

The Institute of Food Research in the United Kingdom manages a database of about 15,000 records on microbial responses to food 
environment. We refer to this database, which is funded by the UK Food Standard Agency, as MicroBase. Its structure can be 
summarised in a scheme as follows:

•. "
The database consists of observations on the relation between Environment and Response, where both sides are characterised by 
primary and secondary variables according to their robustness to describe the relation. The fields of the database can be divided into 
four major groups: b

/

a) Administrative fields (source of data; organism observed; measurement method; observation time; etc)
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M Environment
- Primary environmental variables (temperature; pH; aw);
- Secondary environmental variables (C 02; additives; etc);
- Non-quantified environmental variables (food/culture media; its composition; initial physiological state o f the cells; etc).

c) Response
- Primary response variables (cell concentration profile during the observation time; maximum specific growth/death rate or 

doubling time/D-value; variation of cell concentration during the observation time or time to reach a certain change in cell 
number; probability of growth; etc)

- Secondary response variables (toxin production; competition parameters; etc)
- Non-quantified response variables (growth/no growth; survival/no survival, etc)

d) Quality comments (error estimation; expert comments; etc)

Temperature, pH and water activity are the main environmental factors to determine the response of an organism (McMeekin 
et al, 1993), this is why these variables are among the primary variables of the Environment. Note that a dynamic environment (when 
°ne or more of the quantitative variables change with time during the observation) can also be recorded in MicroBase. In that case, it 
ls not a single quantity that is recorded for the respective environmental variable but the name of the table storing the environmental 
Profile in time.

The secondary variables are, most commonly, inhibitory factors. Together with the non-quantified variables, their possible 
number can be quite significant (in MicroBase it is 40) but a given study commonly aims to observe the effects of only a few.

The viewpoint according to which a response variable is primary or secondary is similar to that seen at the environmental 
Enables. Commonly, the maximum specific growth/death rates or their equivalents, doubling times/D-values, are the most 
characteristic of the studied environment-response relation, and generally it is also easier to model these quantities.

Just as a dynamically changing (time-dependent) environmental profile, also a response profile, such as a whole growth or 
heath curve, can be recorded in MicroBase. To be exact, growth and death parameters are estimated values extracted from those 
Profiles, anyway.

Frequently, it is difficult to decide (and even non-scientific considerations, such as economical or equipment-related issues can 
■nfluence) what environmental factors and what response observations should be recorded at all. By computerising and modelling, 
therefore categorising the Environment and Response variables, some loss of information is inevitable. However, even with this loss, a 
"'ell-organised database with sufficient amount of records is invaluable because of the fast access to the data and because o f the 
Possibility to build mathematical models. Those models can be used to predict situations on which there are no records available.

2 Ma th e m a tic a l  m o d els
p Mathematical model is a set o f simplifying assumptions that disregards negligible details o f the phenomenon to be described. 
requently, models differ only in what extent they omit certain details. There is no recipe for deciding what can be neglected.

Mathematical models are frequently classified as mechanistic and empirical models. The solution to practical problems, however, is 
^ a y s  between the two. The simplest models used in predictive microbiology, such as multivariate polynomials, are empirical models 
a°d aim at the smooth representation of computerised microbiology data.

^hen both the environment and the response variables are dynamic (the measured quantity changes with time), the correct 
Mathematical model, too, must be dynamic, described by differential equations. This point is frequently missed in current research on 
Predictive modelling.

Th,e growth model built around MicroBase can be described as follows

d, = M ') MO 

t>, "'here

: cell concentration,
instantaneous specific growth rate having the form 

M(‘) = a  (t) p max( D ( t )  ) u(t)

'"here

iS*(® ): potential maximum specific growth rate characteristic of the D environment;
l'  : time-dependent vector of extracellular conditions (temperature, pH, etc.);

^  : monotone increasing adjustment function with values between 0 and 1. Its initial level (cto< 1) is determined by the history
of the cells until the inoculation. It characterises the transition from the lag to the exponential phase;
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u(t) : monotone decreasing inhibition function with values between 0 and 1. It characterises the transition from the exponential to 

the stationary phase.

This growth model, because of the dynamic background, is suitable to predict bacterial kinetics under environments changing with time 
(Baranyi and Roberts, 2000). This is an important advantage. For example, a newly developing technique, called TTI (Time 
Temperature Integration) applies dynamic models (Taoukis et al, 1999).
In MicroBase, the internal function /JmJP) is approximated by empirical multivariate polynomials. A basic, three-variable quadratic 
polynomial describes how the primary environmental variables, temperature, pH and water activity, affect the maximum specific 
growth rate. Other, secondary environmental variables only modify the basic model, i.e. if an additive is 0, we get the basic model 
back (Masana and Baranyi, 2000). This approach is summarised in Figl.

sq
Tl

Figl Modelling the effect of secondary environmental variables: extending the basic model. re
th.

Figl. Modelling the effect o f secondary environmental variables: extending the basic model.

The model parameters are estimated from growth data obtained in culture media. (Regarding other computational aspects o f fitting 
and model creation, see Baranyi and Roberts, 2000). Therefore, this is a worst-case-scenario approach because, apart from the pre-set 
environmental variables, the conditions are set to be optimum for growth. This way, when validating a growth model in food 
products, the predicted growth is expected to be higher than observed in food. This is demonstrated specifically for meat in what 
follows, meat being one of the main targets o f predictive models.

I f
ta:

fc
Sit

Results \
<(

In MicroBase, about 6,000 records are derived from publications on the responses o f various pathogens to different combinations o f ' 
environmental conditions observed in food. When a published specific growth rate is plotted against its predicted values, the closer 
the resultant point is to the line o f equality, the more accurate is the prediction. The set o f points obtained this way is called the 
validation plot. For demonstration, three pathogens are selected and their validation plots in meat is shown in Fig2. Observe that 
whenever the error of a prediction is relatively big, it is always on the safe side. This is, as mentioned above, a consequence of the 
worst-case-scenario approach.
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^together, the following rough picture can be drawn as an assessment of the predictive models currently in use. In growth-supporting 
nvironment, the maximum specific growth rate can be determined with 5-10% accuracy. That means that the error margin of a 
easured rate is about 5-10% of the measured value. This is usually confirmed by the standard error of fitting when we regress the 

°garithm of the maximum specific growth rates against temperature, the most dominant environmental factor.

^hen modelling the combined effect o f other environmental factors, each further factor increases this error by another 10% This 
^eans that the basic three-factor models, describing the effect of temperature, pH and water activity on the specific rate, perform at 
round 30% accuracy. Because of the worst-case-scenario design, it is almost excludable that, for example, the observed doubling time 

an organism would be 2-3 times less than predicted by a three-factor model based on sufficient amount of data. (However, it can be 
times bigger, depending on the specific food). Note, however, that these estimations are very rough, averaged out indicators; the 

Xact figures can vary significantly, depending on the studied organism and the region of environmental factors.

. fu ture

The models discussed in this talk belong to the family of so-called deterministic models. These are useful to describe the behaviour of a 
ture only if the cell number is relatively big. Crucial questions of food safety studied at low cell concentrations, such as lag time, 

Probability o f survival and growth, should be modelled by stochastic processes. The validation of stochastic models describing the 
anation of individual cells, however, requires different measurement systems.

simulation study is given below to demonstrate the situation where deterministic models are not suitable and stochastic approach is 
necessary.

j^Ppose that during heat inactivation, the resistance of a cell population remains homogeneous, i.e. the survival time for each cell 
° ows the same (exponential) distribution. Therefore, the concentration of cells decrease exponentially. The output o f a simulation 
r°gram, with parameters characterising the inactivation process of E.coli at around 65°C, shows the “real” inactivation curve as 

"Puare symbols in Fig3.
r he measurements, in this thought-experiment, are made by sampling where the sample contains 10% of all the cells. In Fig3, triangles 
^present the measured cell concentrations. The star symbols at logcount=-1 represent measurements when no cell was detected,
°ugh there were still cells alive (so the stars are “unvisible” for the observer).

a deterministic model is fitted to the measured counts (see the curve fitting the triangles), one can easily “cry wolf’, i.e. can find 
, ailing in this inactivation curve. The tailing shape, however, is a simple consequence of the fact that the effects of biovariability and 

^ sû re m e n t error are much more significant at low cell number than at high population level. In fact, it is impossible to decide from a 
^measurements, if the tailing is real or not. True replicates are necessary at low concentration to validate models o f the variability of 

Slngle cells. 3
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'83. Simulated death curve of a cell population with 
°mogeneous resistance and with measurement (sampling) errors.
116 apparent “tailing” (fitted to the triangles) is not real, only a 

c°nsequence of randomness having greater significance at low cell numbers.
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It can be expected that the future will direct us to seek single cell measurements in order to characterise the distribution of individual 
kinetic parameters. Then, stochastic mathematical models can be applied to study probability of survival and growth. It is important to 
see that no conclusion can be drawn from the variance o f kinetic parameters determined at population level to  the variance o f  the 
respective individual kinetic parameter. For example, as Baranyi (1998), and later Baranyi and Pin (1999) pointed out, the individual 
and population lag are different concepts and the consequences o f this difference are far-reaching. 1
In order to further improve predictive food microbiology, it is expected that automated measuring systems will be developed, able to 
detect properties of individual cells and to produce large amount of data on repeated observations in order to study the variability of 
the cell population Image analysis of colonies generated by single cells, turbidity measurements of populations as successors of single 
cells, flow cytometry are feasable candidates to perform such measurements.

Conclusion

Further fast developments can be expected in food safety research based on using computational means more extensively and 
intensively. Microbiological data are to be made suitable to computerised storage (science of Bioinformatics, which is unfortunately 
meant today mainly for gene banks), and the applied mathematical tools will be more and more sophisticated, helped by the dramatic 
increase of the computing speed and more and more user-friendly and convenient software packages. This “computational 
microbiology” is no doubt going to play significant role in helping to ensure the microbiological safety o f food.
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