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A RECURRENT NEURAL NETWOK FOR MODELLING THE GROWTH OF LISTERIA MONOCYTOGENES IN DYNAMIC
CONDITIONS

A. Lebert, M. Cheroutre-Vialette and I. Lebert
Institut National de la Recherche Agronomique, Station de Recherches sur la Viande, 63122 Saint-Genés Champanelle, France, )

1. INTRODUCTION

Predictive microbiology combined the knowledge of bacterial growth responses over a range of conditions with the power of mathematicé!
modelling to enable predictions of growth. Most mathematical models were elaborated from data coming from growth carried out in constant
conditions of environmental factors (Wijtzes et al., 1993; Fernandez et al., 1997). But, food-manufacturing processes can decrease the pH of
food, produce organic acids or reduce water activity. These processes are extensively used as mechanisms to prevent microbial growth and 10
ensure food safety. The objective of this work was to produce a dynamic model that predicts the growth of Listeria monocytogenes as a functio?
of fluctuating conditions of acid pH (with acid acetic), alkaline pH (with NaOH) and concentration of NaCl by using a recurrent multilayer
neural network (Jones, 1992).

2. MATERIALS AND METHODS

A combination of a factorial design and two central composite designs was used to assess quantitatively the effects and interactions of watef
activity (1-0.95) and pH (5.6-9.5) variations on the growth of L. monocytogenes 14 in a meat broth at two temperatures (10 °C and 20 °C). Fof
each combination, the cells were exposed to the addition of NaCl and acetic acid or NaCl and NaOH at inoculation (= limiting condition) or &
the beginning of the exponential phase (= shock condition). At least, for each temperature, fifty experiments were performed according t0
twenty-five growths in shock condition and twenty-five growths in limiting condition (F; igure 1).

The optimum neurone number of the hidden layer was determined by developing several recurrent neural networks (RNNs) of different size of
the hidden layer (3 to 10 neurones were tested). A seven neurones hidden layer was determined as the best structure. The sigmoid functio?
f(x) = 1/(1 + exp(~ x)) was chosen as activation function. The weights of the neural connections, initially chosen randomly, were adjusted by a not* |
linear optimisation technique: the Quasi-Newtonian formula of Shanno (1970). A learning base (Figure 1) was used to adjust the weights, & )
testing base to provide over-learning during weight optimisation, and a validation base for validation of results. At least, 60% of experiments
were included in the learning and testing bases; the last 40% were in the validation base. In order to ensure the validity of the study, additionsl
growth results with various modes of shock exposure were included into the validation base (Table 1).
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Figure 1: Experimental design showing the combination of osmotic and Figure 2 : Schematic structure of the recurrent neural network
PH shocks (10°C and 20°C).
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Table 1 - Additional experiments at 20°C.

Addition mode Time to obtain the addition of 8% NaCl
4 steps of 2% 4 hours (1 hour between steps)
continuous 1.8 hour

continuous 7.7 hours

In the present study, a recurrent multilayer structure was used (Figure 2). It contained one input layer, one hidden layer and one output layer:
1. in the input layer, six input parameters: Y,., Yi2.6 Yia.a, Tear, PHea: and NaCla, (%)

2. in the output layer, one output parameter : Y, which represented the predicted response b
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viC 3 RESULTS
3}3‘: analysxs of the growth_ predictior'ls in th? limiting. conditions showed that the RNN represented satisfactorily the experimental data whatever
P conditions tested (alkaline-osmotic or acu?-osmotxc) and the temperature (10°C or 20°C). The RNN was able to predict growth when one of
g parameters vary or two parameters vary simultaneously. The different characteristics of the L. monocytogenes response, i.e. induction of a lag
) ’me_and growth recovery different to those observed in the new environment, were taken into account by the RNN whatever the combination,
fﬂkfllme-o§motic or acid-osmotic (Figure 3A). Furthermore, RNN was able to predict the effect of the type of shocks and their combinations. As
1N“dlcat§d in the Figure 3B, thg growth of L. monocytogenes 14 was particularly affected by the combined acid-osmotic shocks (pH 5.6 and 8%
tical b:Cl) in exponential phase since no increase of optical density was observed during the experimental period. There was a good agreement
stant tween the experimental growth and the prediction. Additional experiments were used to investigate the capacity of the RNN to represent the
 of refsp‘(’)nse of L. monocytogenes cells shocked in exponential phase with 8% NaCl added in various modes. The effects of adding 8% NaCl by steps
d to 012% or continuously during 7.7 hours (i.e. four generation times at 20 °C) until the final concentration reached 8% are shown in Figure 3C and
tion '8ure 3D respectively. The extrapolation to new experimental conditions (mode of shock exposure) was made with a good agreement by the
ayel b0.raItti(:I:)onﬁnned that the RNN has the capacity to predict growths carried out in different experimental conditions from those used for its

} 4.concLusioN
atel . se results obtainle.d in variaple condit.ions showed that neural networks could effectively be used to study the complex effects of fluctuating
Fof Vlronr_nental conditions on microorganism behaviour. Such dynamic model could follow the microbial impact of different steps associated with
rat Production; distribution and retailing of a food and so could be an important support to HACCP and food safety systems.
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Figure 3: Comparison between experimental (==) and calculated («+» ) growth curves:
[A] = shock pH 9.1 and 1.2 % NaCl at 10°C -°- [B] = shock pH 5.8 and 6.8 % NaCl at 10°C
(€] = osmotic shock (8 % NaCl) applied by steps of 2 % at 20°C -°- [D] = osmotic shock (8 % NaCl) applied in 7.7 hours at 20°C
%NaCI(— = —)-pH(— - . —)
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