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Background
Meat quality is a subject of growing interest. The meat industry, in response to consumer demand for products of consistent quality, is 

placing more and more emphasis on quality assurance issues. Tenderness is an important quality parameter and is rated as very important by 
the average customer (Lawrie, 1998). Meat tenderness is measured objectively by determining the force required to shear or penetrate a piece of 
meat. Equipment like the Warner-Bratzler shear device and MIRINZ tenderometer are available for objective measurement of meat tenderness. 
These methods are however destructive. Therefore an accurate, consistent, rapid and non-destructive method to evaluate meat tenderness is 
needed in the meat industry.

Recent advances in the area of computer vision have created new ways to monitor quality in the food industry. Computer vision has 
enormous potential for evaluating meat quality as image-processing techniques can quantitatively and consistently characterize complex 
geometric, colour and textural properties. This technique consists of associating a camera for image acquisition, with a computer for image 
analysis.

Marbling and colour scores have been used as indicators of beef tenderness. But colour and marbling scores have limited power to predict 
cooked beef tenderness. The possible reason for this poor prediction is that colour and marbling scores do not contain reliable information 
about tenderness. This has motivated researchers to find alternative indicators for tenderness. Image texture features have shown to be a useful 
indicator of beef tenderness. Colour, marbling and image texture features have been used to develop tenderness prediction models for beef (Li 
et a]., 1999). They performed statistical as well as neural network analyses to relate image features to tenderness score. In the work of Li et al. 
(2001), multi-scale texture analysis based on wavelets was used to classify beef samples into tender and tough categories in terms of cooked 
beef tenderness.

Artificial neural networks (ANNs) are information processing systems which implement simplified models of their biological counterparts, 
biological neural networks. An ANN contains many simple processing elements (neurons) and are capable of learning from the environment in 
which they operate and adapting their responses according to the feedback that they receive.

Objectives
The objectives of the present study were: a) to determine the usefulness of raw meat surface characteristics in cooked meat tenderness 

Prediction; and b) to use neural network models to relate lamb tenderness with geometric and textural data extracted from lamb chop images

Methods
S a m p le  co llec tio n : Lamb mid loin chops were taken from 160 lamb carcasses. After 24 hrs of aging, two sets of mid loin chops at 13 lh rib 

Were removed from both sides of the carcass. One set of samples was used for 24 hrs tenderness evaluation and imaging. The other set was aged 
at 1°C  until 21 days post-mortem and then used for tenderness evaluation.

Im a e e  cap ture: The imaging system consisted of a digital camera, lighting system, personal computer and image processing and analysis 
software (Chandraratne et al., 2002). The samples were all bloomed for 30 min. and surface moisture removed with a paper towel prior to image 
capture. For imaging, lamb chops were placed flat on a non-glare black surface and illuminated with standard lighting. The still images of lamb 
chops were later transferred to the PC for storage and analysis. The images included lean area, marbling, subcutaneous fat, intermuscular fat 
and bone.

S h e a r  force  m e a su rem en t:  Samples were cooked in leak proof plastic bags, containing weights, immersed in a water bath set at 80°C 
until they reached an internal temperature of 75°C. After cooling on ice between 8 and 10 pieces of meat (10 x 10 x 30 mm) were removed with 
rciuscle fibres running parallel to the longitudinal direction of the piece of meat. The pieces of meat were tested using MIRINZ tenderometer 
and the shear force (kgF) was determined. The detailed tenderness testing procedure is given in Bickerstaffe et al., 2001.

Im a e e  a n d  te x tu re  a n a lyses:  Image processing and analysis was accomplished using Image-Pro Plus (Media Cybernetics, USA). 
Thresholding was done through trial and error by observing and selecting the best value. Initial values for thresholding were selected from the 
Plot of pixel intensities. A total of 12  image geometric variables were measured. These included 4 area measurements (lean area, marbling 
area, subcutaneous fa t  area, lean ratio (ratio between lean and lean + marbling)), number o f  marbling specks, 3 measurements of subcutaneous 
fat thickness (sub fa t  average, sub fa t  maximum, sub fa t  minimum), fat thickness at 1 1  cm from the midline of the carcass (fat 11) and  3 
Measurements of fat thickness between 10 and 12  cm from the midline of the carcass (fat 11 average, fa t  11 maximum, fa t  11 minimum). Grey 
level co-occurrence matrix was used to extract texture features. The number of texture parameters calculated from the co-occurrence matrix 
Was 18 (Haralick et al., 1973). The texture parameters were calculated from five co-occurrence matrices: four directional matrices (0°, 45°, 90°, 
135°) and summation matrix. There were a total of 90 texture variables.

D a ta  a n a lys is:  Statistical analysis was performed with Minitab (release 13 .1, Minitab Inc.) and SPSS (release 10.0.5, SPSS Inc.). Neural 
network analysis was performed with NeuroShell 2 (Ward Systems Group Inc., Frederick, MD).

Results and Discussion
Statistical modelling methods have been used in the past for prediction tasks. However ANN, a non-linear approach, could be a promising 

nlternative method for prediction when prediction models are non-linear. ANNs are capable of performing complex prediction and classification 
tasks. ANNs are trained to do these tasks by repeatedly presenting it with known input vectors and corresponding outputs. After training, the 
network can perform the task for new inputs that it has never seen before. In classification and non-linear function approximation, multi-layer 
Perceptron (MLP) networks have become very popular in recent years.

T°r each image, 102 features were calculated: 12 image variables and 90 co-occurrence texture variables. With 102 inputs and one output, 
e number of weights in the MLP network was much larger than the number of samples. As a result, some of the weights cannot be uniquely 

ete|mined from observed data. Therefore, an effective method for reduction of dimensionality of the input feature space was desired. On the
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other hand, the dimensionality reduction is justified as some of the variables measured are highly correlated with others and carry no additional 
information, making them redundant. Principal component analysis (PCA), a method of data compression developed to identify the directions 
of main variability in a multivariate data space, was used to reduce the dimensionality of input variables.

According to the results of PCA, 96% of the total variance of image geometric variables can be condensed into six variables. The results 
were confirmed by cluster analysis. The final set of six variables included lean area , m arb ling  area, f a t  area, lean  ratio , su b  f a t  average  and fa t  
77. In a similar way, 90 variables calculated from co-occurrence matrix were condensed to eight (m ean , entropy, hom ogeneity , con trast, c lu s ter  
prom inence, c lu s ter  shade, d ifference  en tropy  and in form ation  m easures o f  correla tion  2) whilst retaining 99% of the total variance.

An MLP with back propagation algorithm was performed to train the network with one-, two- and three-layers of hidden nodes. To prevent 
overtraining of developed models, the original dataset was randomly divided into training (80%), testing (10%) and validation (10%) sets. 
Testing dataset was applied to prevent over-fitting and validation dataset was used to validate the developed model. Several different neural 
networks and learning schedules were tested to select the best neural network. The default number of hidden neurons specified by the program 
for the three-layer network was 15. Neural networks with number of hidden nodes (12  to 22) were trained. Different combinations of learning 
rates (0.1 to 0.9), momentums (0.1 to 0.9) and initial weights (0.1 to 0.9) were tested. Different activation functions (logistic, symmetric 
logistic, tanh, sine, Gaussian and Gaussian complement), weight updates (vanilla, momentum and turboprop) and pattern selections (rotation 
or random) were also examined. In all cases, linear scale functions [-1,1] were used for input nodes.

The results from neural network models are shown in Tablet. In the ANN analysis, the 14 variables in the reduced feature space (six- 
image geometric and eight texture variables) were used as inputs and the tenderness (21 days) was used as the output. Neural network analysis 
was also performed using six geometric variables as inputs to assess the suitability of geometrical variables alone for tenderness prediction. In 
all cases, networks reached the stopping criterion of 6000 learning epochs in less than 30 seconds. The best coefficient of determination (R  ) 
achieved with six geometric variables and 14 (geometric + texture) variables was 0.621 and 0.746, respectively. The R 2 of 0.72 and 0.70 have 
been reported using statistical and neural networks, respectively (Li et al., 1999).

ANNs have the power to approximate any non-linear input output relationship, provided that certain steps are carefully followed in 
designing and training the network. Number of factors need to be considered for an ANN to produce the best results by detecting the patterns 
contained in a data set. The network performance should be optimised with respect to the network architecture and the size of the training data 
set. The other variables that affect the ANN model development and performance are the type of learning rule (momentum and learning rate) 
and transfer function. The network selection has a significant effect on the results obtained. The network architecture also needs to match with 
the objectives of the study as measured by the generalisation ability of the network. The complexity of the network that mainly depends on its 
architecture must be matched to the complexity of the problem and the number of training samples. A very complex network can perfectly learn 
the training set but generalise poorly (Smith, 1996; Tarassenko, 1998).

Conclusion
The PCA was used to reduce 12 geometric variables to six and 90 texture variables to 8. ANN models were developed using the reduced 

set of data as inputs and tenderness as output. The results indicate that the data extracted from images of lamb chops can be effectively used to 
predict lamb tenderness. The R2 of prediction using the geometrical features alone was 0.621. The use of texture variables improved the R to 
0.746, indicating that the textural features can be used as indicators of quality characteristics of lamb samples in conjunction with geometric 
variables. ANNs can provide good results in a relatively short time, if a great deal of care is taken over the collection and pre-processing of the 
data and the design of the network architecture.
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1 6 15 tanh momentum random 0.1 0.6 0.3 0.435

2 6 5+5 tanh / Gaussian momentum random 0.5 0.1 0.3 0.525

3 6 5+5+5
tan h l5 /s in e / 

symmetric logistic
vanilla random 0.1 0.1 0.6 0.621

1 14 23 logistic turboprop rotation 0.1 0.1 0.2 0.746

2 14 8+8 tanh / logistic momentum random 0.9 0.1 0.3 0.615

3 14 6+6+6 tanh 15 / symmetric 
logistic /  logistic

vanilla random 0.3 0.1 0.3 0.677

Table 1. Results of neural network models

352


