QUALITY CHARACTERISTICS OF BA-TESNG FRESH PORK SAUSAGE AS AFFECTED BY ACID-INDUCED GELLED EGG WHITE POWDER AND SODIUM LACTATE

¹Chen S. L., ¹Chang K. C., and ¹K. J. Lin*

¹Department of Animal Science, National Chiayi University, Taiwan, R. O. C.

Key Words: Ba-Tseng fresh sausage, Acid-induced gelled egg white powder, Sodium lactate, Antioxidant ability, Bacteriostatic ability

Introduction

Chen *et al.* (2004) reported that non-fermented acid Chinese-style semi-dry sausage formulated with acid-induced gelled egg white powder had the antioxidant ability and appetizing acidic traits. Sodium lactate was a natural salt of lactic acid to be extensively used in meat industry, which possessed the characteristics of increasing shelf-life and enhancing meat flavor, water-holding ability, antioxidant function, cooking yields on the meat products without affecting pH value of meat products. And it also had the function of reducing water activity and inhibiting the growth of aerobic, facultative and anaerobic microorganisms. The Chinese mixed herbs-Ba-Tseng powder had the antioxidant and appetizing effects on meat products due to containing the polyphenol functional groups.

The ground fresh pork sausage was an uncured and nitrite-non-added meat products which quality was easily affected by unsuitable raw meat handling processing procedures and storage time, and subsequently to cause the results of lipid oxidative rancidity flavor, color discoloration and microbial growth of products, and further, to reduce the economic value of products.

Objectives

The objective of this study was to investigate the characteristics of pH values, antioxidant ability, color stability and bacteriostatic ability of non-fermented and acidic fresh pork sausage formulated with Ba-Tseng powder as affected by differing ratios acid-induced gelled egg white powder and sodium lactate during 21days refrigerated storage.

Methodology

Materials

- 1. The acid-induced gelled egg white powder were made as described by 8. Chen *et al.* (2004).
- 2. The experimental design of non-fermented and acidic Ba-Tseng fresh pork sausage formulated with 1,2.5% of differing lactic acid concentration (6,7,8,9 and

10%) induced gelled egg white powder and 0,3% of sodium lactate(SL) was shown in table 1.

Methods

- 1. Measurement of pH value, 2-thiobarbituric acid (TBA) value and metmyoglobin (MetMb) content: a. The pH value was measured as described by Ockerman (1974). b. The TBA value was measured as described by Taladgis et al. (1960) and modified Zipser and Watts (1962) and Ockerman (1974). c. The MetMb was analyzed as described by Warriss (1979), Trout (1989) and calculated as described by Krzywicki (1982).
- 2. **Measurements of color difference and water-holding capacity (WHC)**: a. The color difference of Hunter *L*, *a*, *b* value was measured by color difference meter (Model TC-1, Nippon Denshoku Co., LTD, Tokyo, Japan). b. The WHC was measured as described by the methods of McCaw *et al.* (1994).
- 3. **Total plate counts (TPC) measurement**: The Total plate counts was obtained as described by FDA. (1996).
- 4. **Statistical analysis**: Triplicate measurements were conducted for each sample. The statistical analysis of the data was carried out by applying Duncan's new multiple range test using the statistical analysis system (SAS, 1996) by the General Linear Model.

Results & Discussion

The pH value, water-holding capacity, color difference(Hunter L, a, b), metmyoglobin content and total plate counts of Ba-Tseng fresh pork sausage as affected by different ratio lactic acid-induced gelled egg white powder and sodium lactate across all storage days at 4 are shown in table 2, 3, 4, 5, 6, 7 and 8. Table 2 indicated that the pH value of treatment groups A1 and A2 were between 5.5~5.8, D1 and D2 to be lower than 5.4. Table 3 showed that the water holding capacity of all treatment groups were very stable, and A1 and A2 groups had significantly difference (p<0.05) than the others. Table 4 and 5 indicated that the Hunter L and a value of all treatment groups were very stable, and contrasted with metmyoglobin content as shown in table 7, the A1, A2 and B2 had the high acceptability than the others. Table 6 showed that the TBA value of all treatment groups were increased with increasing storage days, and A1, A2, B1 and B2 groups had lower value than the others, and to be significantly difference (p<0.05). It could be explained that the antioxidiant ability of our experimental non-fermented and acidic Ba-Tseng pork sausage were stabilized by Chinese mixed herbs-Ba-Tseng powder. Table 8. indicated that the TPC of all treatment groups were very stable across storage days at 4, and 2.5% of differing lactic acid concentration (6, 7, 8, 9 and 10%) induced gelled egg white powder and sodium lactate had significantly difference (p<0.05) than the others. As we expected that the different ratio lactic acid induced egg white powder and sodium lactate had the synergistic effects on Ba-Tseng fresh pork sausage. Additionally, our experiments have indicated that the sensory evaluation group can not accept the pH value of non-fermented and acidic Ba-Tseng fresh pork sausage to be lower than 5.50.

Conclusions

According to the data of experimental items of pH value, antioxidant ability, color stability and bacteriostatic ability across all storage days at 4 , the Ba-Tseng pork sausage formulated with 1% of 6% lactic acid-induced gelled egg white powder and 3% sodium lactate had possessed the non-fermented and acidic appetizing traits.

References

- Chen, S. L., T. F. Tseng, C. K. Chou and K. J. Lin. (2004). Manufacturing of non-fermented acid Chinese style semi-dry sausage formulated with acid-induced gelled egg white powder. J. Chinese Agr. Chem. Soc. 42(4):293–298.
- Gault, N. F. S. (1985). The relationship between water-holding capacity and cooked meat tenderness in some beef muscles as influenced by acidic conditions below ultimate pH. Meat Sci. 15:23–24.
- Jimenez-Villarreal, J. R., F. W. Pohlman, Z. B. Johnson and A. H. Brown Jr. (2003). Effects of chlorine dioxide, cetylpyridinium chloride, lactic acid and trisodium phosphate on physical, chemical and sensory properties of ground beef. Meat Sci. 65:1055–1062.
- Ledward, D. A. (1985). Post-slaughter influences on the formation of metmyoglobin in beef muscles. Meat Sci. 15:149–171.
- Warriss, P. D., S. N. Brown, E. J. Edwards and T. G. Knowles. (1998). Effect of lairage time on level of stress and meat quality. Animal Sci. 66:255–261.
- Yasosky, J. J., E. D. Aberle, I. C. Peng, E. W. Mills and M. D. Judge. (1984). Effect of pH and time grinding on lipid oxidation of fresh ground pork. J. Food Sci. 49: 1510–1512.
- Zipser, M. and B. Watts. (1962). A modified 2-thio-barbituric acid (TBA) method for the determination of malonaldehyde in cured meat. Food Technol., 16: 102–103.

Tables

Table 1. Experimental design of non-fermented and acidic Ba-Tseng fresh pork sausage formulated with 1%, 2.5% of differing lactic acid concretion (6%,7%,8%,9% and 10%) induced gelled egg white powder and 0%,3% of sodium lactate

A1:	1% of 6% lactic acid-induced gelled egg white powder+0%SL
A2:	1% of 6% lactic acid-induced gelled egg white powder+3%SL
A3:	2.5% of 6% lactic acid-induced gelled egg white powder+0%SL
A4:	2.5% of 6% lactic acid-induced gelled egg white powder+3%SL
B1:	1% of 7% lactic acid-induced gelled egg white powder+0%SL
B2:	1% of 7% lactic acid-induced gelled egg white powder+3%SL
B3:	2.5% of 7% lactic acid-induced gelled egg white powder+0%SL
B4:	2.5% of 7% lactic acid-induced gelled egg white powder+3%SL
C1:	1% of 8% lactic acid-induced gelled egg white powder+0%SL
C2:	1% of 8% lactic acid-induced gelled egg white powder+3%SL
C3:	2.5% of 8% lactic acid-induced gelled egg white powder+0%SL
C4:	2.5% of 8% lactic acid-induced gelled egg white powder+3%SL
D1:	1% of 9% lactic acid-induced gelled egg white powder+0%SL
D2:	1% of 9% lactic acid-induced gelled egg white powder+3%SL
D3:	2.5% of 9% lactic acid-induced gelled egg white powder+0%SL
D4:	2.5% of 9% lactic acid-induced gelled egg white powder+3%SL
E1:	1% of 10% lactic acid-induced gelled egg white powder+0%SL
E2:	1% of 10% lactic acid-induced gelled egg white powder+3%SL
E3:	2.5% of 10% lactic acid-induced gelled egg white powder+0%SL
E4:	2.5% of 10% lactic acid-induced gelled egg white powder+3%SL

Table 2. The pH value of Ba-Tseng fresh pork sausage as affected by different ratio lactic acid-induced gelled egg white powder and SL across all storage days at $4^\circ\!C$

			St	orage time (da	ys)		
Treatment groups	0	3	5	7	10	14	21
Control	5.83±0.01 ^a	6.24±0.11 ⁿ	6.05±0.03ª	6.23±0.06 ^a	6.36±0.03°	6.25±0.03 ^a	6.15±0.04ª
A1	5.64±0.06abc	5.78±0.07bc	5.80±0.10 ^b	5.64±0.05 ^b	5.59±0.02bc	5.78±0.07bc	5.58±0.10bcd
A2	5.57±0.05°	5.88±0.03 ^b	5.84±0.08ab	5.64±0.06 ^b	5.64±0.02b	5.90±0.05b	5.65±0.02bc
A3	4.76±0.03hi	4.94±0.02ghi	4.85±0.12de	4.89 ± 0.04^{fgh}	5.02±0.05f	4.79±0.00hij	4.85±0.05ef
A4	5.02 ± 0.005^g	5.04 ± 0.03^{g}	4.94±0.16 ^d	5.12±0.04°	5.04±0.03f	5.00±0.00 ^{fg}	5.04±0.04°
B1	5.63±0.10abcd	5.76±0.09bc	5.47±0.16°	5.45±0.05°	5.65±0.01 ^b	5.11 ± 0.02^{f}	4.92±0.05ef
B2	5.40±0.14def	5.63±0.03cde	5.43±0.02°	5.44±0.02°	5.54±0.04bcd	5.50 ± 0.00^{d}	5.62±0.04bc
В3	4.75±0.01hi	4.81±0.05 ^{ijk}	4.88±0.11de	4.89±0.01hi	4.78±0.01gh	4.65±0.08lk	4.86±0.07ef
B4	4.92±0.02hgi	4.97±0.03ghi	4.83±0.08de	5.07±0.00ef	5.01±0.04f	4.92±0.03gh	4.95±0.01ef
C1	5.30±0.24f	5.52±0.05def	5.44±0.03°	5.46±0.02b	5.33±0.03°	5.50 ± 0.00^{d}	5.55±0.02 bed
C2	5.46±0.01 cdef	5.58±0.02de	5.50±0.02°	5.58±0.03 ^b	5.40±0.00de	5.50±0.03d	5.68±0.00bc
C3	4.69±0.031	4.77±0.03kj	4.69±0.02°	4.91±0.00hi	4.74±0.00 ^h	4.70±0.03 ^{jk}	4.75±0.03f
C4	4.91±0.01 hgi	4.95±0.02ghi	4.90±0.05de	5.05±0.03 efg	5.02±0.03f	4.90±0.02gh	4.85±0.05ef
D1	5.41±0.02 cdef	5.59±0.02de	5.46±0.03°	5.52±0.08bc	5.35±0.05°	5.69±0.11°	5.41±0.06 ^d
D2	5.56±0.03 bede	5.65±0.05 ^{cd}	5.53±0.01°	5.53±0.01bc	5.44±0.02 cde	5.75±0.01°	5.51±0.02 ^{cd}
D3	4.72±0.001	4.76±0.01kj	4.75±0.03de	4.92±0.02gh	4.77±0.01gh	4.66±0.00 ^k	4.76±0.03f
D4	4.96±0.02gh	5.01±0.04gh	4.91±0.00de	5.06±0.01ef	4.98±0.03f	4.89±0.01ghi	4.97±0.00°
E1	5.39±0.08ef	5.41±0.07f	5.43±0.04°	5.31 ± 0.06^{d}	5.56±0.01 bcd	5.36±0.02°	5.58±0.22bed
E2	5.56±0.07bcde	5.48±0.04ef	5.53±0.03°	5.45±0.01°	5.61±0.21b	5.41±0.01de	5.73±0.02b
E3	4.76±0.04hi	4.65±0.05k	4.69±0.01°	4.53 ± 0.01^{j}	4.70±0.01h	4.52±0.021	4.53±0.028
E4	4.98±0.02gh	4.84±0.02hij	4.91±0.01 ^{de}	4.78 ± 0.03^{i}	4.92±0.01 ^{fg}	4.76±0.03 ^{ijk}	4.76±0.00f

^{a-1}Mean within the same column with different superscripts are significantly different (p<0.05).</p>

Table 3. The water holding capacity of Ba-Tseng fresh pork sausage as affected by different ratio lactic acid-induced gelled egg white powder and SL across all storage days at 4°C

			Sto	rage time (days)			
Treatment groups	0	3	5	7	10	14	21
Control	70.66±1.14 ^{bcd}	74.22±1.02 ^a	74.23±0.79 ^a	72.13±1.51ab	74.23±1.61ª	73.41±1.02°	73.98±1.03ª
A1	68.11±1.86 efgh	70.16±1.31 bed	70.69+1.28abed	71.16+0.35abed	69.15±0.10 bedef	68.94±0.78 ^{cd}	70.85±0.32bc
A2	67.95±0.62 eigh	69,46±0,30 bedef	70.41±2.46 abcdet	70.86±0.48 abcde	70.77±0.42 bede	67.62±1.56 de	70.85±1.08bc
A3	66.16±0.31gh	66.84±0.521gm	67.52±0.53edf	67.68±0.46 Ighi	67.89±0.58ef	66.97±0.38de	67.06±0.35°
A4	67.57±0.29 efgh	65.89±0.59hij	67.16±0.28er	67.24±0.34ghi	68.23±0.83 ^{def}	66.75±0.47de	66.43±0.83°
B1	73.72±1.18 ^a	72.15±0.92ab	72.05±1.02abc	72.85±0.37°	72.34 ± 0.75^{ab}	70.39±1.11bc	68.22±1.21 ^{cd}
B2	72.55±1.12ab	70.00±1.18bcde	72.90±0.72ab	71.89 ± 0.68^{ab}	72.16±3.77abe	72.75±0.04ab	72.55±0.91ab
В3	66.81±0.49fgh	65.60±0.61 ^{ij}	67.18±0.72ef	66.56±0.58hi	67.76±0.16ef	67.07±0.33 de	66.49±0.51°
B4	66.63±0.54 ^{fgh}	66.16±0.45hij	67.60±1.12edf	66.17±0.151	67.30±0.46f	67.30±0.71de	66.42±0.97
C1	69.29±0.56 ^{cde}	71.47±1.29abc	71.60±0.87abed	71.31±0.59abe	67.17±1.76f	68.32±0.92 ede	68.19±1.22 ^{cd}
C2	71.01±0.50bc	69.83±0.78bcde	69.62±0.84 bcdef	70.59±0.60 bcde	68.85±0.46 cdef	68.56±0.47 cde	70.13±2.12bc
C3	67.18±0.48 elgh	67.38±0.35 deighi	66.64±0.43 ^{e1}	68,03±0,10 ^{1ghi}	68.52±0.33 del	67.24±0.51 de	66.81±0.39
C4	67.74±0.44eigh	66.83±0.39 ^{Ighij}	66.21±1.611	68,23±0,67 ^{1ghi}	68.01±0.71 det	67.00±0.83de	66.14±0.51°
D1	68.83±0.89cdef	68.05±0.57 deighi	68.20±1.93 cdef	68,98±0,91 defg	69.41±1.20 bcdet	68.64±1.90 ^{cde}	69.09±1.00 ^{cd}
D2	68.45±0.52 delg	69.57±1.14 bcdef	69.07±1.09bcdef	68.00±0.67 ^{1ghi}	71.35±0.41 aoca	68.27±1.06 cde	70.11±0.61 be
D3	67.88±0.24 eigh	66±510.40ghij	66.72±0.97ef	69.67±0.92 cdef	68.56±0.34 der	66.84±0.33 de	67.28±1.15de
D4	68.17±0.54efgh	65.76±0.29 ¹	67.73±0.97edf	68.38±0.25fgh	68.98±0.18bcdef	66.98±0.11de	66.69±0.55
E1	68.49±0.75 ^{defg}	69.00±0.95cdefg	68.41±0.47bcdef	68.67±1.33 efgh	68.78±0.60cdef	68.19±0.53cde	67.45±0.12de
E2	68.57±0.35 ^{cdefg}	68.59±1.18 ^{defgh}	69.73±0.30 bcdef	68.04±0.62 ^{efg}	69.16±0.69bcdef	68.94±0.79 ^{cd}	68.06±0.77cd
E3	67.74±1.02 efgh	67.33±0.66 efghi	66.57±0.57ef	67.29±0.73ghi	67.09±0.29f	66.21±0.31°	66.31±0.43°
E4	65.87±0.60 ^h	64.65±0.94 ^j	68.84±3.95bcdef	66.13±0.62 ⁱ	67.55±0.01ef	66.45±0.40de	66.73±0.57

^{a-j} Mean within the same column with different superscripts are significantly different (p<0.05).

Table 4. The lightness (L value) of Ba-Tseng fresh pork sausage as affected by different ratio lactic acid-induced gelled egg white powder and SL across all storage days at 4° C

			St	orage time (day	s)		
Treatment groups	0	3	5	7	10	14	21
Control	38.93±0.96ab	43.35±1.87ª	42.64±0.44°	40.33±0.36 ^a	38.64±1.05ab	39.60±1.88ab	41.10±1.46ab
A1	33.83±1.07 ^{defg}	34.77±1.34 def	34.64±0.88 defg	33.66±1.65 ^{fgh}	35.56±0.44cde	33.90±0.22 efg	34.75±1.11gh
A2	33.16±0.89etg	34.19±0.88def	33.74±0.36 efgh	32.65±1.12gfij	33.86±0.32ef	34.59±0.85def	34.48±0.60gh
A3	36.83±0.33bed	36.33±1.00 ^{edef}	35.44±0.65def	37.40±1.37bcdef	35.82±0.58cde	39.57±0.47ab	37.28±0.14cdefg
A4	34.29±0.84 ^{defg}	35.79±1.02def	34.16±0.14 defgh	35.78±0.73 ^{defg}	36.90±0.59bc	33.90±1.00efg	34.86±0.92fgh
B1	31.88±1.49g	31.43±0.57gh	30.79 ± 0.84^{i}	29.89±0.51 ^{ij}	30.68±0.25h	31.87±1.22fg	35.82±1.09efgh
B2	31.52±0.68g	30.45±0.20h	30.95±0.21 ⁱ	29.60±0.34 ^j	30.94±0.53gh	31.55±0.49g	34.27±1.66gh
В3	36.20±0.44bcde	37.32±0.84bcd	38.13±0.41bc	38.11±1.33abcd	37.48±1.32abc	40.15±1.70ab	39.40±1.75abcd
B4	34.30±0.79cdef	35.82±1.05 ^{def}	36.23±0.71 bcde	36.22±0.16 cdef	35.85±0.96 ^{cd}	38.14±0.57abc	38.03±0.72 bcdef
C1	32.58±0.97 ^{fg}	33.46±0.24 ^{fgh}	31.93±0.551	32.93±0.23ghi	33.38±0.54f	33.28±0.50efg	33.38±0.55h
C2	31.99±1.18g	33.10±0.49fgh	32.55±0.25ghi	33.25±0.84fgh	33.57±0.61f	32.95±0.74 efg	33.69±0.55h
C3	38,79±1,40abc	39.15±0.57bc	38.16±0.44bc	38.32±0.71 abcd	39,08±0,27ª	39.50±1.49ab	39.97±0.60abc
C4	37.55±0.92abc	37.00±0.39bcde	34.71±0.69 defg	37.07±0.10 bcde	35.66±0.62 cde	39.76±1.28ab	38.20±1.70abcde
D1	33.34±0.40 ^{efg}	34.71±1.00 ^{def}	35.47±0.06 ^{def}	35.25±0.96 defg	34.39±0.59 def	34.69±0.10 ^{def}	35.34±0.23efgh
D2	33.47±1.39efg	33.67±0.86 ^{fgh}	33.79±1.10efgh	32.97±0.80ghi	33.12 ± 0.06^{f}	32.79±0.27efg	35.34±0.88efgh
D3	40.14±0.46a	40.02±0.60b	38.68±1.11b	39.19±1.00abc	39.25±1.01a	40.87±1.18a	40.83±1.33ab
D4	35.67±0.59cdef	36.28±1.99cdef	36.17±0.69bcde	34.92±1.16 efgh	36.30±0.73 ^{cd}	35.22±1.06 ^{cde}	38.06±0.87abcde
E1	32.23±10.6g	33.95±0.28efg	33.52±0.53fgh	33.97±0.79 efgh	32.81±0.38fg	33.50±0.88efg	34.50±0.80gh
E2	31.25±1.528	33.32±1.56 ^{fgh}	32.46±0.90ghi	32.48±0.49hij	31.10±0.11gh	33.90±0.53 efg	34.65±0.22gh
E3	36.83±0.86 bcde	39.33±0.97bc	36,64±0,59bcd	39.59±1.51ab	38.95±0.18ª	39.34±0.21ab	41.28±1.43a
E4	33.20±1.76 efg	36.96±1.12bcde	35.99±2.34cdef	36.39±0.78 ^{cdef}	36.81±0.17bc	37.21±1.04bcd	36.28±0.85 ^{defgh}

^{a-j} Mean within the same column with different superscripts are significantly different (p<0.05).

Table 5. The redness (a value) of Ba-Tseng fresh pork sausage as affected by different ratio lactic acid-induced gelled egg white powder and SL across all storage days at 4° C

			Sto	rage time (da	ys)		
Treatment groups	0	3	5	7	10	14	21
Control	10.95±0.75 bcdef	7.35±0.26 bcdef	7.45±0.56°	7.84±0.24bcd	7.18±0.33 bede	7.50±0.34abc	6.63±0.51 ^{cde}
A1	10.83±0.38abc	9.19±0.30ab	9.00±0.56ab	9.08±0.16ab	7.74±0.36bcde	7.61±1.21ab	6.64±0.0.31 cd
A2	10.79±0.40abc	9.90±0.52ª	9.10±0.37ab	10.34±0.54°	8.22±0.47bc	7.89±0.63ab	8.20±0.32ab
A3	8.14±0.05efgh	5.96±0.27 ^{defghi}	5.65±0.87ef	4.64±0.29fg	4.32±0.25gh	5.84±0.59cdefg	4.35±0.03hi
A4	9.22±0.46bcdef	6.94±0.30cdefg	5.89±0.05de	5.40±0.48ef	5.46±0.72fg	5.36±0.01 defghi	6.95±0.58bcd
B1	8.89±0.62 cdefg	8.18±0.36abc	7.61±0.20°	7.61±0.45 ^{cd}	10.00±0.46ª	9.10±0.64ª	7.51±0.19abc
B2	9.49±0.70 bcdef	8.38±0.54abc	7.62±0.30°	6.94±0.25d	8.49±1.06b	8.72±0.51a	8.62±0.53ª
B3	8.45±0.61 defgh	5.85±0.74 efglit	4.16±0.26gh	3.82±0.11g	4.16±0.41gh	4.22±0.17ghij	4.92±0.32fghi
B4	9.44±1.03 beder	7.57±1.24 bede	4.79±0.73 efgh	4.60±0.49fg	4.56±0.40gh	5.41±0.50 delghi	6.84±0.25 bcde
C1	10.30±0.10abcd	8.28±0.71 abc	7.24±0.53°	7.11±0.43 ^d	6.67±0.78def	5.63±0.25 defgh	5.20±0.07fghi
C2	10.10±1.21 abede	8.62±1.15abc	6.93±0.55 ^{cd}	7.52±1.11 ^{ed}	6.72±0.39cdef	6.24±0.75 bedef	5.52±0.17 efgh
C3	7.18±0.59gh	4.82±0.43hi	3.87±0.19 ^{fgh}	3.94±0.368	4.11±0.59gh	4.28±0.22ghij	4.63±0.12ghi
C4	8.31±0.26 defgh	6.25±0.64 ^{defg}	4.45±0.07gh	4.13±0.11 ^{fg}	4.32±0.10gh	4.59±0.13gfij	5.67±0.34 defg
D1	10.95±0.24ab	9.80±0.24a	8.98±0.24ab	8.94±.78abc	8.33±0.21b	6.94±0.47bcd	5.61±0.17 ^{defgl}
D2	11.75±0.62ª	9.69±0.07ª	9.58±0.15ª	8.78±0.45bc	8.05±0.34bcd	6.98±0.28bcd	6.03±0.33defg
D3	7.02±0.29h	5.05±0.42hi	3.87±0.36h	3.79±0.468	4.17±0.07gh	3.84±0.33 ^{ij}	4.98±0.20fghi
D4	9.50±0.31 bcdef	5.69±0.66hi	5.01±0.20efgh	4.36±0.41 ^{fg}	4.40±0.53gh	5.20±0.10 efghi	6.04±0.23def
E1	10.50±1.09abc	7.73±0.36 bcd	6.90±0.21 ^{cd}	6.72±0.62de	6.42±0.72e1	6.57±1.08 bcde	5.01±0.13 defg
E2	11.72±1.30°	8.74±1.02 abc	7.91±0.09bc	7.17 ± 0.10^{d}	6.56±0.01 def	7.48±0.58abc	6.28±0.07cdef
E3	7.95±0.28fgh	4.36±0.27	5.08±0.15etgh	3.80±0.40g	3.30±0.20 ^h	3.37±0.571	4.11±0.18 ^j
E4	9.08±0.19 bcdefg	5.11±0.13hi	5.39±0.28 efg	4.09±0.07 ^{fg}	3.61±0.10 ^h	4.00±0.51hij	5.07±0.42 fghi

^{a-j} Mean within the same column with different superscripts are significantly different (p<0.05)

Table 6. The TBA value (mg MDA/g) of Ba-Tseng fresh pork sausage as affected by different ratio lactic acid-induced gelled egg white powder and SL across all storage days at 4°C

	Storage time (days)								
Treatment groups	0	3	5	7	10				
Control	0.181±0.10 ^{cdef}	0.174±0.02°	0.221±0.05 ^t	0.185±0.00°	0.175±0.01h				
A1	0.188±0.16cdef	0.200±0.04°	0.319 ± 0.11^{f}	0.759±0.09°	2.882±0.83gh				
A2	0.078 ± 0.01^{f}	0.235±0.05°	0.234 ± 0.05^{f}	0.530±0.03e	0.933±0.08h				
A3	0.522±0.23ab	1.887±0.84ab	4.269±0.26bc	6.701±1.70bc	8.412±0.85bed				
A4	0.468±0.09abcd	1.53±0.20abc	3.8714±0.50°	9.259±0.61ab	9.521±1.15abc				
B1	0.157±0.01def	0.232±0.02e	0.276±0.04f	1.316±0.44de	0.751±0.17h				
B2	0.169±0.01 ^{cdef}	0.237±0.06e	0.663±0.13f	0.755±0.04e	1.517±0.85gh				
B3	0.477±0.12abc	1.574±0.43abc	4.678±0.57bc	8.084±1.52ab	7.485±0.99cde				
B4	0.403±0.05bcde	1.298±0.16bed	6.033±0.92ª	10.302±1.03ª	9.614±0.82abc				
C1	0.224±0.02 bcdef	0.276±0.07 ^e	0.443 ± 0.08^{f}	1.424±0.72de	4.420±1.20fg				
C2	0.141±0.02ef	0.235±0.01°	0.496±0.08f	1.288±0.57de	6.13±1.29fe				
C3	0.726±0.193a	2.130±0.23a	4.066±0.71bc	8.455±1.85ab	7.714±0.29cde				
C4	0.743±0.18a	1.550±0.28abc	4.878±0.56abc	9.92±0.33°	11.074±1.60al				
D1	0.161±0.08cdef	0.296±0.00e	0.686±0.13f	1.610±0.20e	1.610±0.202g				
D2	0.141 ± 0.00^{ef}	0.257±0.03e	0.427 ± 0.02^{f}	1.842±0.35de	1.842±0.35gh				
D3	0.341±0.02bcdef	1.476±0.17abc	5.293±0.52ab	9.179±1.44ab	9.179±1.44abc				
D4	0.296±0.02bcdef	0.824±0.15cde	4.466±0.36bc	10.281±1.04°	10.28±1.04abc				
E1	0.275±0.04bcdef	0.295±0.04e	0.747±0.21ef	1.103±0.27de	6.970±1.48bcd				
E2	0.280±0.06 bcdef	0.293±0.05e	0.568±0.15f	1.700±0.24de	8.106±0.94bcd				
E3	0.340±0.07bcdef	0.672±0.10 ^{de}	2.337±0.13d	3.907±0.97 ^{cd}	9.926±0.45abc				
E4	0.317±0.00bcdef	0.452±0.09e	1.981±0.83de	3.872±0.35 ^{cd}	12.056±1.38ª				

a-h Mean within the same column with different superscripts are significantly different (p<0.05)

Table 7. The MetMb content (%) of Ba-Tseng fresh pork sausage as affected by different ratio lactic acid-induced gelled egg white powder and SL across all storage days at 4°C

	Storage time (days)									
Treatment groups	0	3	5	7	10	14	21			
Control	34.87±3.04ed	38.63±2.40h	43.52±3.35h	40.80±0.591	44.45±2.08fg	48.68±1.41h	30.28±2.96*			
A1	47.48±5.49ab	48.19±2.69 ^{defg}	49.15±2.58 th	52.83±6.00 ^{hg}	61.23±3.94 ^{cde}	59.05±4.33 fgh	84.29±1.79°			
A2	46.79±0.03abe	52.32±3.18bedef	55.68±2.13 defgh	54.13±2.08fgh	56.23±0.76°f	60.93±0.96efg	66.48±1.66ed			
A3	37.80±4.92abed	58.81±1.93bcde	65.99±6.72abcdef	68.25±0.26abcd	77.25±2.32ab	72.89±1.26abcd	79.15±2.43abe			
A4	37.36±0.80abed	61.24±3.81be	67.00±3.53 abedef	72.02±2.21abed	73.62±2.02ªbed	71.57±0.10abed	75.48±1.20abe			
B1	33.16±2.23ed	27.77±3.62h	57.47±4.17edefgh	60.24±0.07efg	39.22±10.02 ^E	77.42±3.32ab	73.44±2.04ªbed			
B2	43.93±1.17abed	48.76±0.66cdef	53.23±9.79fgh	63.36±4.41 edefg	39.70±6.51 ⁸	55.46±1.91fgh	58.47±11.58d			
B3	32.19±3.26d	59.61±3.48bed	69.35±1.28abed	74.92±0.40ab	75.41±0.28abe	76.43±0.80°b	78.49±0.40abc			
B4	33.66±3.53 ^{cd}	61.59±1.15abc	73.13±0.42ab	73.96±1.57abc	74.31±1.42abcd	75.01±0.43abc	72.11±2.08abcc			
C1	32.66±1.73ed	46.20±5.66fg	50.97±1.60gh	55.55±3.31 ^{fgh}	58.55±0.16 ^{def}	64.08±1.14 ^{cdefg}	73.76±0.10abe			
C2	35.52±2.87abed	49.75±0.79 edefg	54.38±2.51fgh	56.13±0.81fgh	63.33±0.87bede	66.09±3.66bcdef	74.25±8.02ªbe			
C3	43,54±3,50abed	58.77±2.51 bcde	71.01±1.05abe	73.96±2.69abc	73.85±0.37abcd	77.37±2.14 ^{nb}	82.00±3.53ab			
C4	39.40±2.38abcd	73.50±2.12ª	75.12±1.04ab	73.94±0.62abe	75.46±0.57abed	72.98±3.15abed	74.50±2.35abe			
D1	42.59±5.49abed	46.99±4.16*fg	45.00±5.84h	46.86±4.27hi	54.34±3.95°fg	54.34±3.95gh	81.73±0.18ab			
D2	42.97±1.34abed	49.02±0.07 ^{defg}	47.40±0.97gh	56.46±4.54 ^{fgh}	54.81±0.31 efg	54.81±0.31fgh	80.46±4.69ab			
D3	38.15±5.53abed		67.00±4.32abcdef	74.90±1.78ab	76.58±0.58abe	76.58±0.58 ^{ab}	80.28±2.93ab			
D4	37.80±2.39abed	62.06±5.60ab	69.09±1.44abcde	71.96±0.37abed	73.55±1.02abed	75.33±1.02abed	74.08±0.77abe			
E1	47.86±6.77ab	48.56 ± 2.07^{defg}	54.59±1.90defgh	64.32±0.71 bcdef	80.33±0.25°	76.41±1.43ab	73.98±0.08abc			
E2	49.51±2.48a	55.26±0.32bedef	60.48±0.74bcdef	62.05±3.95defg	69.66±11.21abcde	77.50±0.46ab	67.89±3.37bed			
E3	49.23±3.90°	64.12±1.54ab	74.64±3.94ab	75.69±0.67°	76.25±0.55abc	80.62±2.44°	80.18±0.08ab			
E4	49.65±3.31°	63.98±3.58ab	75.77±0.79a	75.64±1.92°	78.17±0.30ab	79.00±1.98°	76.37±2.23abc			

 $^{^{}a-i}$ Mean within the same column with different superscripts are significantly different (p<0.05).

Table 8. The TPC (log CFU/g) of Ba-Tseng fresh pork sausage as affected by different ratio lactic acid-induced gelled egg white powder and SL across all storage days at 4°C

			Stor	age time (d	days)		
Treatment groups	0	3	5	7	10	14	21
Control	3.96bc	4.09 ^a	4.37 ^b	4.39 ^b	3.87ab	3.41	5.06
A1	3.84 ^{cd}	3.60 ^f	3.38i	3.94°	5.15ab	4.08 ^d	4.42
A2	3.49ef	3.92°	3.95°	3.72 ^g	4.11 ^{a0}	3.5ghi	3.83
A3	3.87cd	3.79 ^d	4.32°	3.00°	2.82ab	4.06 ^d	4.83
A4	3.35fg	3.54f	3.31 ^j	3.33 ¹	4.26ab	3.83e	4.718
B1	4.04abc	4.06ab	4.43°	4.56ª	5.22ab	5.39ª	3.76
B2	4.24°	3.72de	4.17 ^d	4.27°	4.27ab	4.95b	4.52
В3	3.11 ^h	2.83 ^k	3.22 ¹	3.19 ^m	3.01ab	3.56ghi	4.74
B4	3.12h	3.20h	2.95 ⁿ	3.45 ^k	3.30ab	3.99 ^d	5.21
C1	4.16°	4.01 ^b	3.48g	3.88°	4.05ab	4.08 ^d	4.02
C2	4.20 ^{ab}	3.73ed	3.97°	3.82 ^f	6.65	3.61gh	4.11
C3	3.13 ⁿ	3.08 ^{ij}	2.80°	2.90 ^p	2.99ab	3.79el	4.698
C4	3.68de	3.00 ^j	2.66 ^p	3.08 ⁿ	3.59ab	2.96k	4.10
D1	3.18gn	3.40g	3.74 ^f	3.61 ⁱ	3.61ab	3.23	5.15
D2	3.86 ^{cd}	3.01 ^j	3.25 ^k	3.69h	3.99ab	3.67 ^{fg}	3.88
D3	2.89i	3.08 ^{ij}	2.66 ^p	3.19 ^m	3.16ab	3.63gh	4.86
D4	3.74 ^d	3.12hi	2.479	2.81°	2.72b	3.54hi	4.38
E1	3.47ef	3.91°	2.93 ⁿ	3.19 ^m	3.40ab	4.46°	5.43
E2	3.35 ^{fg}	3.70°	3.39i	2.84 ^q	3.14ab	4.46°	5.33
E3	3.01 ^m	3.69°	2.98 ^m	3.07 ⁿ	3.10ab	3.04k	4.46
E4	3.02hi	3.43g	3.43h	3.51 ^j	3.09ab	3.17 ^j	4.17

^{a-r} Mean within the same column with different superscripts are significantly different (p<0.05)