ANTIBACTERIAL EFFECT OF SODIUM CAPRYLATE ON ESCHERICHIA COLI 0157:H7 IN CATTLE DRINKING WATER

Mary Anne Roshni Amalaradjou*, Thirunavukkarasu Annamalai, Patrick Marek, David T. Schreiber Jr., Thomas Hoagland and Kumar Venkitanarayanan

Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040

Key Words: E.coli O157:H7, sodium caprylate, cattle drinking water

Introduction

E.coli O157:H7 is a major food-borne pathogen in the United States. Cattle serve as the principal reservoir of E.coli O157:H7, excreting the pathogen in feces, thereby contaminating food, water, and the environment (Chapman et al 1993, Laegreid et al., 1999, Shere et al., 1998; Zhao et al., 1998). Environmental persistence of E.coli O157:H7 is critical in its epidemiology on farms (LeJeune et al., 2001). Several researchers have isolated E.coli O157:H7 from cattle water troughs, indicating that water troughs on farms could serve as a potential long-term reservoir of the pathogen. Persistence of *E.coli* O157:H7 in cattle water troughs can potentially act as a source of re-infection of cattle, birds, flies, and rodents, which, in turn can act as vectors of the pathogen (McGee et al., 2002). Thus, there is a need for an effective and practical method for killing E.coli O157:H7 in cattle water troughs. Inactivation of E.coli O157:H7 in water at farm will potentially shut down one source of infection to cattle, thereby leading to a reduced carriage of E.coli O157:H7 in cattle. This in turn will translate into improved farm and animal hygiene, and a reduced contamination of beef products with E.coli O157:H7. Finally, a safe supply of beef products is critical for the economic viability of the beef industry.

Caprylic acid is a natural, eight-carbon fatty acid present in breast milk, bovine milk (Jensen *et al.*, 2002), and coconut oil (Jensen *et al.*, 1990, Sprong *et al.*, 2001). Caprylic acid is a food-grade chemical approved by the FDA as GRAS (CFR 184.1025). Previous research conducted in our laboratory indicated that caprylic acid was highly effective in killing *E.coli* O157:H7 in bovine rumen fluid (Annamalai *et al.*, 2004).

Objectives

To determine the antibacterial effect of sodium caprylate to kill *E.coli* O157:H7 in cattle drinking water.

Materials and Methods

Bacterial strains and media

Four strains of green fluorescent protein (GFP)-labeled *E.coli* O157:H7 were used in the study. The four strains of GFP-labeled *E.coli* O157:H7 were individually

cultured in 10 ml of Tryptic soy broth (TSB, Difco) containing 100 μ g/ml of ampicillin (Sigma-Aldrich Chemical) at 37°C for 24 h with agitation (150 rpm). Following incubation, the cultures were sedimented by centrifugation (3600 X g for 15 min), washed twice, and resuspended in 10 ml of sterile deionized water. Equal portions from each of the four cultures were combined, and 100 μ l (approximately 10^8 CFU) of the four-strain mixture was used as the inoculum.

Sample inoculation and treatments

The efficacy of sodium caprylate for killing *E.coli* O157:H7 was determined in water with and without bovine feces or feed. Water was obtained from a local dairy farm, and aliquots of 100 ml each of water were dispensed into 250 ml sterile containers. Appropriate quantities of sodium caprylate (Sigma-Aldrich Chemical) were added to each water sample to obtain a final concentration of 75, 100 or 120 mM. Samples without sodium caprylate (0 mM) were used as controls for the study. In addition, a set of water samples containing bovine feces (1% w/v) (McGee et al., 2002) or feed (1% total mixed ration, TMR) were also included to determine the effect of feces/feed on the antibacterial property of caprylate. Each treatment and control water sample was inoculated with the four-strain mixture of *E.coli* O157:H7 to obtain an inoculation level 10⁶CFU/ml of water. The containers were loosely covered with plastic lids to enable free passage of air. The samples were incubated at 21°C, 10°C or 4°C. Triplicate samples of each treatment and control were included at each of the specified temperatures, and the entire study was duplicated.

Enumeration of E.coli O157:H7

The population of surviving *E.coli* O157:H7 in each water sample was determined by plating 0.1-ml portions of the samples directly or after serial dilutions (1:10 in phosphate buffered saline, PBS, pH 7.4) on duplicate Tryptic soy agar (TSA) plates containing 100 μg/ml of ampicillin. The plates were incubated at 37°C for 24 h and viewed under ultra violet light to enumerate *E.coli* O157:H7 (Vialette *et al.*, 2004). At each sampling time, 1 ml of water from each container was also transferred to separate 250-ml flasks containing 100 ml of sterile TSB for enrichment at 37°C for 24 h. When growth was observed in TSB, the culture was streaked on TSA containing 100 μg/ml of ampicillin. The pH of each treatment and control sample was determined using an Accumet pH meter (Fisher Scientific, Pittsburgh, PA).

Statistical analysis

For each treatment and control, the data from independent replicate trials were pooled, and analyzed using a split-plot design with repeated sampling over time. The model included the treatment, concentrations, storage temperature and days. Significant differences (P < 0.0001) in bacterial counts due to treatment, concentrations, storage temperature and days were determined.

Results & Discussion

The magnitude of E.coli O157:H7 inactivation in water significantly (P < 0.0001) increased with increase in caprylate concentration and storage temperature. At 120 mM, sodium caprylate completely inactivated E.coli O157:H7 in all samples,

excepting those containing feces at 4° C. Feces or feed also had a significant effect (P < 0.0001) on the antibacterial property of caprylate. At all the storage temperatures, bovine feces substantially reduced the killing of *E.coli* O157:H7 by caprylate, whereas inactivation of the pathogen was rapid in presence of TMR.

Conclusions

This study indicated that sodium caprylate is effective in killing *E.coli* O157:H7 in cattle drinking water especially at higher environmental temperatures. This is important since fecal excretion of *E.coli* O157:H7 by cattle has been reported to be higher in summer months than in winter (Heuvelink et al., 1998; Jackson et al., 1998). Our future studies will focus on the palatability of water containing sodium caprylate to cattle.

Acknowledgement

This study was supported by a grant from the American Meat Institute Foundation, Washington D. C.

References

- Annamalai T, Mohan Nair MK, Marek P, Vasudevan P, Schreiber D, Knight R, Hoagland T, Venkitanarayanan K. 2004. In vitro inactivation of Escherichia coli O157:H7 in bovine rumen fluid by caprylic acid. J. Food Prot. 67:884–888.
- Chapman, P. A., D. J. Wright, P. Norman, J. Fox, and E. Crick. 1993. Cattle as a possible source of verocytotoxin-producing Escherichia coli O157:H7 infections in man. Epidemiol. Infect. 111:439–447.
- Heuvelink, A.E., F.L. van den Biggelaar, J. Zwartkruis-Nahuis, R.G. Herbes, R. Huyben, N. Nagelkerke, W.J. Melchers, L.A. Monnens, E. de Boer.1998. Occurrence of verocytotoxin-producing Escherichia coli O157 on Dutch dairy farms. J. Clin. Microbiol. 36(12):3480–3487.
- Jackson, S. G., Goodbrand, R. B., Johnson, R. P., Odorico, V. G., Alves, D., Rahn, K., Wilson, J. B., Welch, M. K. & Khakhria, R. 1998. Escherichia coli O157:H7 diarrhea associated with well water and infected cattle on an Ontario dairy farm. Epidemiol. Infect. 120:17–20.
- Jensen, R. G. 2002. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85:295–350.
- Jensen, R. G., A. M. Ferris, C. J. Lammi-Keefe, and R. A. Henderson. 1990. Lipids of bovine and human milks: a comparison. J. Dairy Sci. 73:223–240.
- Laegreid, W. W., R. O. Elder, and J. E. Keen. 1999. Prevalence of Escherichia coli O157:H7 in range beef calves at weaning. Epidemiol. Infect. 123:291–298.
- LeJeune, J. T., T. E. Besser, and D. D. Hancock. 2001. Cattle water troughs as reservoirs of Escherichia coli O157. Appl. Environ. Microbiol. 67:3053–3057.
- McGee P., D. J. Bolton, J. J. Sheridan, B. Earley, G. Kelly, and N. Leonard. 2002. Survival of Escherichia coli O157: H7 in farm water: its role as a vector in the transmission of the organism within herds. J. Appl. Microbiol. 93:706–713.
- Shere, J. A., K. J. Bartlett, and C. W. Kaspar. 1998. Longitudinal study of Escherichia coli O157:H7 dissemination on four dairy farms in Wisconsin. Appl. Environ. Microbiol. 64:1390–1399.

- Sprong, R. C., M. F. Hulstein, and R. Van der Meer. 2001. Bactericidal activities of milk lipids. Antimicrob. Agents Chemother. 45:1298–1301.
- Vialette, M., Jandos-Rudnik, M., Guyard, C., Legeay, O., Pinon, A., and Lange, M. 2004. J.Appl. Microbiol. 96:1097–1104.
- Zhao, T., M. P. Doyle, B. G. Harmon, C. A. Brown, P. O. E. Mueller, and A. H. Parks. 1998. Reduction of carriage of Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. J. Clin. Microbiol. 36:641–647.