RELATIONSHIP OF INTRAMUSCULAR FAT, FATTY ACIDS AND CONJUGATED LINOLEIC ACIDS WITH TENDERNESS IN PORK

B.Q. Jin*, X.Y. Liu, P. Qiao and W. Zhan

Department of Food Science and Nutrition Nanjing Normal University Nanjing 210097 China

Key Words: Conjugated linoleic acids, fatty acid, intramuscular fat, tenderness, pork

Introduction

Intramuscular fat (IMF) that is a primary visual stimulus to customers plays an important role in driving people to purchase meat. It is generally accepted that a higher level of IMF has a positive influence on tenderness, but not been illustrated consistently (Brewer, 2001; Fernandez, 1999a & 1999b; Van Laack, 2001). Conjugated linoleic acids (CLA) has anticancerogenic, antiatherogenic, antidiabetic effects and so on. Its content and division maybe are also relative with meat tenderness. With increasing of unsaturated/ *cis* fatty acids and decreasing of *trans* fatty acids (FA), the meat hardness will reduced correspondingly (Wood, 2003). The couple of C18:0/C18:2 or CLA may be a key factor for pork tenderness.

The aim of this study was to research the relationship between IMF/FA/CLA and pork tenderness. The mathematical model for IMF/FA/CLAlinking pork tenderness was to be built up.

Materials and Methods

M. longissimus dorsi (LD) was obtained from nine kinds of crossbred swines (9 groups) at 10-12 rib (n = 66). LD samples were stored at $3\pm1^{\circ}$ C for 3 d to test their shear force. 1) A piece of LD (3cm thickness) was heated at 80°C in water bath, the middle temperature of meat up to 70°C and kept 10min, then cooled at 2°C for 12 h. 10-12 meat columns from the same piece ($\oint = 1.27$ cm) were determined shear force (SF)with tenderometer (C-LM3, PRC). IMF(Fortin, 2005), ether-16 FAs (containing a couple of CLA; Aldai, 2006) were analysed by Saxhlet and gas-chromatography, respectively. All of data were treated as Means ± SD with one-way analysis of variance (ANOVA) by SPSS 13.0. Pearson correlation coefficients and regression equations were set up.

Results and Discussion

Rrelationship between IMF content and pork tenderness in 9 groups. IMF content in LD was the range of 1.37% - 3.78% in 9 crossbreds. There was no the significant negative linear relativity between IMF and SF (r = -0.230, P = 0.074) as Fortin (2005) by Pearson correlation coefficient. However, the log⁻ curve relativity ("Inverse" mathematical model) was estimated between both of them. Its regression equation was $Y_{SF} = 0.104 \times 1/X_{IMF-c}$ (R² = 0.702, P<0.001***, Figure 1) for pork.

Relationship between FAs and pork tenderness. 16 FAs were assayed by gas-chromatography in this study. In pork, the composition of FAs as saturated and unsaturated FAs was around half by half. There was significant negative relativity between C14:0, C18:2, C18:3 and C22:6 with SF in pork, respectively (r = -0.31, r = -0.48, r = -0.52, r = -0.47; $p < 0.01^{**}$). C18:1 and C18:2 (*cis9/tans11, trans10, cis12*) were UFA in pork mostly. There was logarithmic correlation coefficient betweent FAs and SF, especially up to very significantly in C18:0/C18:2 (r = 0.619, p < 0.01^{**}, Table 1). Both of their relation was clearly by "Logarithmic" mathematical model: $Y_{SF} = 13.678 \times lnX_{C18:0/C18:2}$, $R^2 = 0.775$, $p < 0.001^{***}$; Figure 2).

Conclusions

There were signicantly negative Log-relativity between IMF content and pork tenderness, while positive Log-relativity between the ratio of C18:0/C18:2 and pork tenderness by "Inverse" curve model. There was

F Figure 2 Log relation with the ratio of C18:0/C18:2 and SF

C18:0/C18:2

3.50

Table 1 Correlation coefficient between FAs and SF in pork									
	\mathbf{X}_1	X_2	X ₃	X_4	X_5	X_6	X7	X_8	X9
Y	0.095	-0.306*	0.048	-0.088	-0.192	0.057	0.326*	0.307	-0.484**
	X ₁₀	X11	X ₁₂	\mathbf{X}_{13}	3	X ₁₄	X15	X ₁₆	X ₆ / X ₉
Y	-0.526**	-0.069	0.191	-0.18	37 0.	124	-0.474**	-0.047	0.619**

Figure 1 Log relation between IMF and SF

Notes: Y-SF, X₁-C12:0, X₂-C14:0, X₃-C16:0, X₄-C16:1(c9), X₅-C17:0, X₆-C18:0, X₇-C18:1(c9), X₈-C18:1(t9), X₉-C18:2(c9,12), X₁₀-C18:3(c6,9,12), X₁₁-C18:3(c9,12,15), X₁₂-C20:0, X₁₃-C20:4(c5,8,11,14), X₁₄-C22:4 (c5,8,11,14), X₁₅-C22:6(c4,7,10,13,16,19), X₁₆-C18:2 (*cis9*, *trans11*); *p < 0.05 and **p < 0.01 meant the difference significantly between crossbreds.

References

- Aldai. N., Osoro. K., Barron L. J. R., and Najera, A. I. (2006). Gas-liquid chromatographic method for analysing complex mixtures of fatty acids including conjugated linoleic acids (cis9trans11 and trans10cis12 isomers) and long-chain (n-3 or n-6) polyunsaturated fatty acids - Application to the intramuscular fat of beef meat. *Journal of Chromatography A*, 1110:133-139.
- 2. Fernandez, X., Monin, G., Talmant, A., Mourot, J., and Lebret, B. (1999a). Influence of intramuscular fat content on the quality of pig meat-1. Composition of the lipid fraction and sensory characteristics of *m. longissimus lumborum. Meat Science*, 53:59-65.
- 3. Fernandez, X., Monin, G., Talmant, A., Mourot, J., and Lebret, B. (1999b). Influence of intramuscular fat content on the quality of pig meat-2. Consumer acceptability of muscle *lingissimus lumborum*. *Meat Science*, 53:67-72.
- 4. Fortin, A., Robertson, W. M., Tong, A. K. W. (2005). The eating quality of Canadian pork and its relationship with intramuscular fat. *Meat Science*, 69:297-305.
- 5. Schmid, A., Collomb, M., Sieber, R., and Bee, G. (2006). Conjugated linoleic acid in meat and meat products: A review. *Meat Science*, 73:29-41.
- 6. van Laack, R. L. J. M., Stevens, S. G., and Stalder, K. J. (2001). The influence of ultimate pH and intramuscular fat content on pork tenderness and tenderization. *Journal of Animal Science*, 79:392-397.
- Wood, J. D., Richardson, R. I., Nute, G. R., Fisher. A.V., Campo, M. M., Kasapidou, E., Sheard, P. R., Enser, M. (2003). Effects of fatty acid on meat quality: a review. *Meat Science*, 66:21-32.