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Abstract—The objectives of this study were 

to analyze the interrelationships among hot 

carcass weight (HCW), carcass dimension, 

and tissues thickness and area 

measurements, and to develop models to 

predict lean meat percentage of lamb 

carcasses. One hundred and twenty-five 

lambs, 83 males and 42 females, of Churra 

Galega Bragançana Portuguese local breed 

were slaughtered, and carcasses were 

weighed (HCW) approximately 30 min after 

exsanguination. After cooling at 4 C for 24-

h a set of seventeen carcass measurements 

were recorded, and left side of carcasses was 

dissected and lean meat percentage (LMP) 

was calculated. Data interrelationships were 

analyzed following the common factor 

analysis procedure, and models to predict 

LMP were developed by regression 

procedures. All variables were highly and 

positively correlated with HCW (r > 0.46), 

being especially high in the carcass 

dimensions measurements (r > 0.75). Three 

common factors (factor I = carcass weight; 

factor II = subcutaneous fat thickness; 

factor III = breast bone tissues thickness) 

were retained, and accounted for 83.5% of 

the variation in the original variables. The 

best single predictor was C12 fat 

measurement, and accounted for 66.2% of 

the LMP variation with a sep of 2.39%. This 

study shows that prediction of LMP of lamb 

carcasses can be based on one single fat 

measurement (C12), If a large set variables 

is available, their orthogonal CF can be 

used as predictors avoiding collinearity, and 

given rise to more stable prediction models.   
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I. INTRODUCTION 

 The European sheep production systems are 
characterized by a high number of breeds, with 
different body size, raised under very different 
production systems, leading to a great market 
variety in lambs age and live/carcass weight. 
Carcass fat levels plays an important role in 
meat sensory characteristics, however excess 
of fat is undesirable since leads to higher 
production costs, and compels meat traders to 
its removal at selling. A carcass with reference 
or ideal fat content should present the higher 
commercial value, and whenever the carcass 
composition moves away from the ideal 
composition, its price must suffer penalties. 
Thus carcass classifications systems presents 
an important role in the definition of rules for 
carcasses transactions along the meat chain. 
European Union lamb carcasses classification 
and grading system is based on photographic 
standards [12], by visual appraisal, which is 
subjective, suffering of inconsistency among 
slaughter-houses and assessors [5]. Concerning 
the development of objective classifications 
systems, the EU legislation defines that they 
must be based on the prediction of LMP, and 
models must present standard error of 
prediction lower than 2.5% [11]. The 
objectives of this study were to analyze the 
interrelationships among HCW, carcass 
dimensions, and tissues thickness and area 
measurements, and to develop models to 
objectively predict lean meat percentage of 
lamb carcasses.  

II. MATERIALS AND METHODS 

 One hundred and twenty-five lambs, 83 males 
and 42 females, of Churra Galega Bragançana 
(CGB) Portuguese local breed, weighing 10.3 
to 41.6 kg, randomly selected from the 
experimental flock at the Escola Superior 
Agrária de Bragança. Lambs were raised with 
their mothers in natural suckling until 
slaughter, and had access to pasture, natural 
meadow hay, and a commercial concentrate 
mixture with mineral-vitamin supplementation. 
Lambs were slaughtered after 24-h fast in the 



experimental slaughter-house at the Escola 
Superior Agrária de Bragança, and carcasses 
were weighted approximately 30 min after 
slaughter in order to obtain the HCW 
according to Fisher and Boer [3]. After chilling 
at 4ºC for 24-h, carcasses were suspended on a 
gamble with 21-cm distance between legs. The 
following carcass measurements were taken: 1) 
carcass length (K, cm) measured from the base 
of the tail to the base of the neck [14]; 2) leg 
length (F, cm), representing the smallest 
distance from the perineum to the interior face 
of the tarsal-metatarsal articular surface [14]; 
3) buttocks width (G, cm) measured using the 
measuring calliper at the level of the proximal 
edge of the patellae (Fisher and Boer, 1994); 4) 
thorax circumference (U, cm) measured using 
a tape held horizontally around the thorax at 
the level of the caudal portion of the scapula; 
and, 5) buttock circumference (CB, cm) was 
measured using a tape held horizontally around 
the buttocks at the level of the caudal insertion 
[3]. Carcasses were halved through the centre 
of the vertebral column, and the kidney knob 
and channel fat (KKCF) was removed and 
weighed. The left side was quartered and 
tissues measurements were performed with a 
caliper on maximum LM depth (mm) and 
subcutaneous fat thickness (mm) between the 
12th and 13th ribs (B12 and C12, 
respectively), 1th and 2th lumbar vertebrae (B1 
and C1, respectively), and 3rd and 4th lumbar 
vertebrae (B3 and C3, respectively). 
Additionally, LM area between the 12th and 
13th ribs (LEA12), 1st and 2nd lumbar 
vertebrae (LEA1), and 3rd and 4th lumbar 
vertebrae (LEA3) was traced on acetate sheet 
and LM area was measured using a digital 
planimeter (model KP-90; Koizumi Placom, 
Niigata, Japan). Lastly, total breast bone tissue 
thickness (mm) was taken with a sharpened 
steel rule at middle of the 2nd (BT2), 3rd 
(BT3) and 4th (BT4) sternebrae. All carcasses 
were dissected into muscle, subcutaneous fat, 
intermuscular fat, bone, and remainder (major 
blood vessels, ligaments, tendons, and thick 
connective tissue sheets associated with 
muscles), and the carcasses lean meat 
percentage was calculated. Data were analyzed 
using the R Development Core Team [15] 
software. Summary statistics were computed 
by the sapply() function, and correlations 

among variables by the cor() function. The 
psych package [16] was used to perform a 
CFA, and the factors were retained using the 
mineigen criterium Krzanowski [7]. Simple 
and multiple linear models to predict LMP 
were developed through regression procedures 
under the MASS package [20]. Models fitting 
quality was evaluated through the coefficient 
of determination of estimation ( ), standard 
error of estimate (see). Models validation was 
perfomed by k-fold cross-validation using the 
cv.lm() function in the DAAG package [9], 
and the crossval() funtion under the bootstrap 
package [13], and the coefficient of 
determination of prediction ( ) and standard 
error of prediction (sep) were computed..  

III. RESULTS AND DISCUSSION 

 Linear correlations among HCW, carcass 
dimensions, and tissue measurements are 
shown in Table 1. All variables were highly 
and positively correlated with HCW (r > 0.46), 
these correlations were especially high among 
HCW and carcass dimension measurements (r 
> 0.79), and breast bone tissue thickness (r > 
0.66). Carcass dimension measurements were 
highly correlated (r > 0.75) among themselves. 
Subcutaneous fat thickness had high and 
positive correlations (r > 0.58) with breast 
bone tissue thickness. The correlations among 
LM area and depth measurements were 
positive moderate to high (from 0.49 to 0.80). 
The Breast bone tissue measurements were 
highly correlated among themselves (r > 0.85). 
Similar results were obtained in the 
subcutaneous fat measurements which were 
highly correlated (r > 0.71) among them. These 
results show that the similar tissues 
measurements taken at different anatomical 
positions are collinear. Clearly, collinearity 
was a general problem in these eighteen 
variables, being specially evident among HCW 
and carcass dimension measurements (F, K, G, 
U, and CB), confirming the findings of 
Boccard et al. [1] in sheep and Shahin et al. 
[18] buffalos. Common factors pattern (after 
varimax rotation), communalities, unique 
factor, eigen values, and variance explained by 
the three common factors retained are 
displayed in Table 2. Common factor analysis 
was able to identify three common factors 
which accounted for 81.5% of the variation on 



the 18 original variables, leaving 18.5% of the 
variation for the 18 unique factors. Factor I 
was characterized by high, and positive 
loadings (factor-variable correlation) in HCW 
(r = 0.843), carcass dimension measurements 
(r = 0.826 to 0.887), and LM muscle depth and 
area measurements (r = 0.669 to 0.801). This 
factor accounted for 46.5% of the variation in 
the 18 original variables. Factor II accounted 
for an additional 20.8% of the variation in the 
original variables, showed high and positive 
loadings (r > 0.794) in the subcutaneous fat 
thickness measurements. Lastly, Factor III 
accounted for 14.2% of the total original 
variability in the 18 original variables, and 
presented high and positive loadings on breast 
bone thickness measurements (r > 0.685). 
Original variables contribution to each factor 
can be evaluated by its loadings (variable-
factors correlation) on the common factors 
extracted. Variables with high loadings in the 
same factor are correlated, consequently, carry 
redundant information and give rise to 
collinearity problems in multiple regression 
models. Thereby, do not improve the models 
fitting quality and cause instability on the 
parameters estimation [17]. Best models based 
on one, two and three variables for predicting 
LMP are presented in Table 3. HCW 
accounted for 17.3% of the variation in LMP 
(data not shown), confirming the results of 
several authors [6, 4] where HCW alone was 
not able to explain the LMP of lamb carcasses. 
Many studies showed that multiple regression 
linear models were dominated by live weight 
[19] or carcass weight [2, 10], however these 
models were developed to predict muscle 
weight instead of LMP. The small variation 
observed in LMP when compared to the 
variation observed in lean meat weight 
explains the lower   of models predicting LMP, 
since the variance increase in the dependent 
variable results in models with higher   . The 
best single predictor was C12 measurement, 
and accounted for 66.2% of the LMP variation 
with a sep of 2.39%. The different 
measurements showed different accuracy for 
prediction of LMP, and fat measurements 
dominate the models. However, all models 
based on single predictors (others than C12) 
presented sep higher than 2.5%, which is the 
superior limit for approval of prediction 

equations for objective classifications systems 
by the EU [11]. Multiple linear regression 
models (Model 2 and 3) also included C12 
measurement, n spite of the   increase, these 
models presented lower predicting abilities as 
can be observed by the higher standard error of 
prediction (sep = 4.04%). Model 4 presented 
fitting quality similar to Model 1 as can be 
observed by the . Despite the similarity fitting 
quality, it is worthwhile to point that Model 4 
showed greater stability on the estimation of 
regression coefficients. It is important to notice 
that carcass dimension measurements didn’t 
contribute to explain LMP of lamb carcasses. 
These results confirm the lack of relationship 
between carcasses conformation and 
composition, being measurements that reflect 
skeleton dimension rather than carcasses 
muscle and fat indicators [8].   

IV. CONCLUSION 

 Clearly, results from the common factors 
analysis identified three sets of collinear 
variables which carry redundant information: 
1) the set comprised by HCW, carcass 
dimension measurements, LM area and depth 
measurements; 2) the set comprised by 
subcutaneous fat thickness measurement; and 
3) the set comprised by breast bone tissue 
thickness measurements. Prediction of LMP of 
lamb carcasses can be based on one single fat 
measurement (C12), which will simplify the 
carcass classifications systems. If a large set of 
variables is available, their transformation into 
CF retain most of the information of original 
variables, and these new variables, orthogonal 
CF, can be used as predictors avoiding original 
predictors colinearity, given rise to more stable 
models. This application can be very useful for 
automated systems, like video image analysis, 
where large sets of predictors can be recorded 
at high speed and low cost at slaughter-houses 
level.  
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Table 1: Correlations among HCW, carcass dimensions, and tissues depth and area measurements  
                  
 HCW F  K  G  U  CB  B12 B1  B3  LEA12 LEA1 LEA3 C1  C3  C12 BT2 BT3 
                  
F  0.79                  
K  0.87  0.83                
G  0.94  0.75 0.84               
U  0.93  0.81 0.87 0.89              
CB  0.95  0.77 0.85 0.94 0.90             
B12  0.77  0.55 0.63 0.74 0.68 0.78            
B1  0.84  0.62 0.77 0.80 0.81 0.82 0.79           
B3  0.56  0.51 0.60 0.59 0.61 0.61 0.57 0.63          
LEA12 0.86  0.66 0.73 0.83 0.81 0.85 0.78 0.76 0.49         
LEA1  0.88  0.70 0.78 0.83 0.84 0.85 0.72 0.80 0.58 0.89         
LEA3  0.86  0.73 0.76 0.82 0.82 0.84 0.67 0.77 0.60 0.82  0.87        
C12  0.56  0.30 0.30 0.50 0.46 0.55 0.36 0.42 0.07 0.55  0.50  0.45       
C1  0.46  0.20 0.22 0.46 0.36 0.48 0.30 0.30 0.05 0.47  0.40  0.39  0.77     
C3  0.74  0.46 0.47 0.66 0.62 0.71 0.56 0.61 0.15 0.67  0.62  0.59  0.80 0.71    
BT2  0.77  0.47 0.60 0.75 0.68 0.76 0.62 0.62 0.37 0.72  0.69  0.66  0.61 0.63 0.70   
BT3  0.78  0.50 0.60 0.74 0.69 0.75 0.63 0.64 0.39 0.72  0.69  0.68  0.58 0.58 0.68 0.93  
BT4  0.66  0.35 0.45 0.64 0.56 0.65 0.56 0.53 0.24 0.64  0.59  0.53  0.62 0.63 0.68 0.85 0.90 
                  
 

Table 2: Factor pattern, after varimax rotation, communalities, unique factor, eigen values, and variance explained by the 

three common factors retained      
Variables  Factor I Factor II Factor III     

HCW  0.843  0.419  0.295  
F  0.836  0.137  0.100  
K  0.887  0.124  0.212  
G  0.826  0.367  0.304  
U  0.865  0.286  0.236  
CB  0.832  0.402  0.284  
B12  0.696  0.256  0.258  
B1  0.784  0.286  0.223  
B3  0.669  -0.098  0.140  
LEA12  0.734  0.391  0.310  
LEA1  0.801  0.328  0.262  
LEA3  0.789  0.285  0.257  
C12  0.186  0.888  0.276  
C1  0.110  0.780  0.295  
C3  0.422  0.794  0.212  
BT2  0.447  0.461  0.685  
BT3  0.444  0.408  0.780  
BT4  0.276  0.502  0.727      
Eigen values 8.36  3.74  55  
Variance, % 0.465  0.208  0.142      

 

Table 3: Best models to predict LMP based on one, two, and three variables, and on the common factors retained 
      
 Models 2
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