PE4.121Sodium reduction in bacon, how industry meets research. 447.00<u>Theo Verkleij</u> (1) theo.verkleij@tno.nl, FK Stekelenburg(1), ,(1) TNO Quality of Life, Utrechtseweg 48, PO 360, 3700AA Zeist, The Netherlands

Type key words: bacon, sodium reduction, structure, product safety, taste.

I. INTRODUCTION

Sodium reduction is an issue for all processed foods. The meat industry has also a responsibility to focus on lowering the sodium content of meat and meat products. If the amount of sodium in meat products is substantial lowered, a list of possible problems concerning product structure, shelf life, yield and taste can occur. For lowering the amount of sodium in bacon substantial by substituting it with potassium, the yield, structure, shelf-life and taste was affected. Α multidisciplinary approach was implemented to help industry with lowering the sodium content of bacon with 40% and maintain the structure, yield, shelf life and taste.

II. OBJECTIVES

How can industry lower the sodium content of bacon without affecting structure, yield, shelf life and taste?

III. METHODOLOGY

A survey of the industrial produced common- and low salt bacon on structure, shelf life and taste was carried out to gather the crucial information to set up a model. The model was set up to predict the shelf life of the current bacon and asses substituted ingredients to reach the same shelf life. Next step was to construct a brine recipe with respect to sustain a good bacon structure. On a pilot scale different brines with possible compositions were composed and tasted. The most promising brines are used in practical circumstances in industry to produce bacons. Results were tested with an expert panel.

IV. RESULTS AND DISCUSSION

The choice of replaceable additives was made on contribution on the a_w lowering of those additives,

as shown in table 1. This table was the basic assumption to compose several brines which would give the same calculated a_w value after injection of the bacon. The combination of a_w value with storage temperature will give the desired shelf life. The different compositions were also technological judged on their ability to their sustainability on structure and yield. This technological assessment was carried out in close cooperation with the industry. All the compositions were tested with an expert panel on taste; the brine with normal amount of sodium was taken as reference as well as the brine used for a low sodium bacon

Brines with an off taste were rejected for further experiments.

Several selected brines (see table 2) were tested in practice on small industrial by multi needle injecting pork loins and subsequently tumbling, vacuum packed and stored at $+2^{\circ}$ C during two days for equalize the sodium in the bacon. All products were frozen, conditioned at -8° C and sliced to the desired thickness to uniform bacon pieces. The bacon slices were sensorial tested by an expert panel on color, outside look, consistency, taste and smell. For results see table 3. All the samples were microbiological tested and checked on a_w value.

V. CONCLUSIONS

Despite on the fact all experiments were carried out once, it was proven to be possible to replace 40 % of the sodium in bacon without affecting the yield, the structure of the bacon, the taste and the microbiological risk.

TABLES AND FIGURES

Additive	Formula	Amount needed (in %) to replace 1% NaCl to maintain a _w
Sodium chloride	NaCl	1.0
Potassium chloride	KCl	1.3
Calcium chloride	CaCl ₂	1.3
Ammonium chloride	NH ₄ Cl	0.9
Magnesium chloride	MgCl ₂	1.1
Potassium sulfate	K_2SO_4	2.0
Magnesium sulfate	MgSO ₄	2.0
Potassium lactate	C ₃ H ₅ O ₃ K	2.2
Potassium acetate	CH ₃ COOK	1.7
Glucose	$C_6H_{12}O_6$	6.2

Table 1: Overview of possible additives to replace NaCl while maintaining a_w

Table 2:	Exchanged	composition	of salt in brines

Brine composition			a _w -	
				waarde
5% NaCl	Reference brine			0,969
3% NaCl	2,6% KCl			0,970
3% NaCl	1,3% KCl	2,2% K lactaat		0,972
3% NaCl	0,65% KCl	2,2% K lactaat	1,6% glucose	0,973
3% NaCl Reference low salt brine			0.983	



Figure 1: Predictive shelf life of a low salt bacon (a_w=0,981) stored at 0, 2 and 5°C against a standard bacon (a_w=0,960) stored at 5°C.

Recipe	Reference	3% NaCl +	3% NaCl + 1,3	3% NaCl + 1,3	Reference
	Low salt	2,6% KCl	% KCl +2,2%	% KCl +2,2%	high salt
			K-lactate	K-lactate +	-
				1,6% glucose	
Color	7.1	7.3	8.4	7.3	6.9
Outside look	6.5	n.d.	7	7.5	7.0
Consistency /bite	6.8	7.5	7.5	7.5	7.3
Smell and taste.	6.9	7.4	7.1	7.0	7.5

Table 3: Scores of sensorial test of 5 different bacons recipes by an expert panel.

Not enough data to determine the figure.