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Abstract.—.The problems that arise when applying 

predictive microbiological methods to the industrial 

food supply chain, include unreliable sampling, 

uncertain growth characteristics and other 

perturbations operating at different time scales, the 

result of uncontrollable environmental effects are 

discussed. Methods of dealing with these issues, 

including QA procedures, improved statistical 

techniques and model updating methods are 

proposed. The utility of applying variance and 

covariance component analysis to the industrial 

food supply chain to improve aspects of the 

management of food spoilage associated with cost 

benefit analysis is discussed.   
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I. .INTRODUCTION 

The modelling of microbial population dynamics is a 
substantial element of predictive microbiology. The 
goal of such modelling is to predict the state of a future 
population of microbes subject to the initial population 
size, the substrate and the environmental conditions. 
There are a number of semi-empirical models, which 
with a proper parameterisation can provide a suitable 
description of microbial growth. The majority of cited 
below works were based on the Baranyi model [1], 
which has a number of structural advantages over 
Gompertz or logistic type models.  Environmental 
effects are generally introduced into these models by 
modifying the parameters governing the population 
growth. Most commonly such parameters as specific 
growth rates or bacterial lag time are considered as 
known functions of environmental variables. A number 
of examples are given in [4].  The work of many 
authors has attested to the efficacy of these empirical 
models to describe microbial population growth quite 

accurately in the laboratory. However, the industrial 
food supply chain introduces further aspects that 
require scientific attention if food spoilage is to be 
managed.   
 

II. RESULTS AND DISCUSSION 
The application of models based on microbial 
population dynamics, in the industrial situation must 
consider the following problems: 
 • Initial population sizes are unknown, 
and sampling protocols are generally inadequate to 
provide reliable estimates. The costs of adequate 
sampling are prohibitive.  
• Control of the environmental variables 
affecting microbe growth along the supply chain is 
limited.  
• Uncertainties in the microbial 
population growth characteristics may occur, perhaps 
due to interactions with other microbe species, seasonal 
characteristics etc. This causes deviations from model 
growth curves, which are essentially unpredictable.  
• Acceptance sampling at stages along 
the supply chain provide unreliable estimates of 
microbial population size.   
We have developed methods to address each of these 
problems   
 
Determining the Initial Microbial Population Size  
 
Typically industrial laboratories use measurements of 
the population size of microbes that are subject to a 
detection limit. A zero measurement does not 
necessary mean there are no microbes present, merely 
that the number are below the detection limit. Using a 
sample measurement of zero to calculate the statistics 
of an initial population size introduces a bias. For 
example, the average population size will be 
underestimated. This problem has been dealt with in 
[5] by considering a frequency distribution truncated at 
the detection limit and then using maximum likelihood 
methods to find estimates of the population size.   
 
The second problem is the poor sampling coverage, 
which is generally inadequate to estimate the microbe 
initial population size with suitable accuracy. The 



approach taken to this problem is to assume that the 
packing plant microbial population is in equilibrium, so 
that the frequency distribution of initial microbial 
population size is stationary. That is, the size of the 
microbial population has the same frequency 
distribution from one period of time to the next. A 
gamma probability density has been found to be a 
suitable quantitative description of this initial 
population distribution in the cases we have 
considered, but other probability densities may also be 
considered.   
 
As samples are collected at the packing plant over time 
they can be used to test the hypothesis that the initial 
microbial population size remains within the stationary 
distribution, using Quality Assurance (QA) procedures. 
A Cusum method proposed in [3] is one way of doing 
this. Sequential sample results are plotted on a 
cumulative sum chart, and if the QA statistical tests 
signal a rejection of the current stationary initial 
population size distribution, a new stationary 
distribution can be calculated using recent 
measurements. In this manner a continuous adjustment 
can be made to a new regime, if conditions that affect 
microbial load change.   
 
Uncertain measurements of environmental variables 
along the supply chain. It is common practice to 
include measurement loggers in a meat shipment to 
obtain a continuous recording of environmental 
variables. Temperature is the environmental variable 
usually recorded.   
 
However, because these loggers record temperatures at 
discrete times, and because the way temperature affects 
microbe growth is generally not known exactly, the 
relationship between actual changes in environmental 
conditions and microbial growth is uncertain. This 
phenomenon is known as process variance. Over a 
period of 60 days of shipment this uncertainty may 
increase to be significant. This issue has been 
addressed by using stochastic differential equations 
where the stochastic disturbance term represents the 
uncertainty in the relationship between temperature 
changes and microbial growth [7].   
 
Changes in microbial growth characteristics Microbes 
on meat consist of heterogeneous interactive sub-
populations. As environmental conditions change the 
nature of these interactions also change. For example, 

the introduction of new hygiene protocols at a packing 
plant may trigger a change in the relative population 
sizes and a change in the growth dynamics. Seasonal 
effects on the frequency of microbial types in packing 
plants are well known, but difficult to predict. These 
effects may drive an unpredictable change in the 
population dynamics over time, so that the population 
growth models used become inaccurate.   
 
Our approach to this problem has been based on a 
technique from control engineering known as updating 
models. When the models describing the outcome of 
interest are linear the Kalman Filter is generally 
applied. However, when the relationships are 
nonlinear, as they are in microbial population growth, 
other techniques must be applied. The Particle Filter 
based on Bayesian probability methods has proved to 
be useful in this respect [2], but other nonlinear model 
updating methods could also be used. The technique 
changes the model parameters to conform to the new 
situation in an optimal way taking into account 
correlations between parameters.   
 
That is, a probabilistic basis for predictive 
microbiology models is essential for operating model 
updating.  Starting with the probability density for the 
initial conditions estimated, as described above, and 
data from temperature loggers, a dynamic model 
calculates a probability density for the microbial 
population size some future time. At this time an 
acceptance sampling of microbe population size is 
taken and this sample compared objectively with the 
predicted probability density. If the acceptance sample 
is significantly different from the predicted probability 
density, a model update, or reassessment of the model 
parameters may be required. This is an objective 
procedure which adjusts nominated model parameters 
according to a joint probability density of those 
parameters. Typical parameters chosen for updating are 
those describing how temperature affects the relative 
microbe population growth rate, and the supply chain 
process variance.   
 
However, any model parameters can be nominated to 
be updating parameters.  Unreliable acceptance 
sampling Acceptance sampling procedures suffer from 
the same problems as sampling for initial conditions, 
low sample numbers giving unreliable estimates. 
Therefore, a single comparison between an acceptance 
sample and a predicted probability size density is 



unlikely to identify any major changes in the process.  
Thus, both the assessment of a model update and the 
update itself needs to take account of previous 
comparisons between the predicted probability density 
and the acceptance samples. Typically, an update may 
be tuned to assess a time trend in these comparisons, 
using the ensemble of measurements to test a 
divergence between model predictions and the actual 
population size at acceptance. In addition, it would be 
unwise to calculate a model update using the difference 
based on a single acceptance sample. Rather the 
updating procedure uses previous acceptance samples 
as well as the current sample.   
 
Improving the management of the industrial food 
supply chain An improvement in the quality 
management of a supply chain generally means a 
reduction in either or both of the mean and the variance 
of microbial population size. Achieving this requires 
knowledge about how the mean and variance of 
microbial population size develop. The methods 
discussed above generate a wealth of data that can be 
used to address these issues and thus to improve 
methods to control food spoilage.   
 
It is expected that after a period of operation different 
supply chains (e.g. European or North American) 
would have different model parameters characteristic 
of the supply chain concerned, and hopefully optimised 
for the supply chain concerned. These differences and 
the changes in both the initial population frequency 
distribution and the model parameters over time can be 
used to improve knowledge about the performance of 
the supply chain as it relates to food spoilage. Such 
knowledge can be used to design improvements to 
increase product shelf life.   
 
The changes in the initial population size distribution 
for each microbe type measured can be analysed to find 
relationships between changes in the stationary 
distribution and packing plant conditions. Generally, 
several microbe types will be monitored and the co-
dependence between different types can be assessed. 
Such an analysis can be very useful in establishing how 
differences in plant operations, seasonal effects and 
livestock sources change the initial microbial 
population sizes in terms of changes in the probability 
density – i.e. not just changes in the mean microbial 
population size.   
 

Similar analyses can be performed by associating 
changes in the model updating parameters with 
observed conditions in the supply chain. For example, 
some shipping routes may be advantageous, or some 
packing technologies better than others.   
 
A more sophisticated analysis would use the changes in 
the model parameters for different supply chains to 
infer packing plant attributes. For example, to try and 
locate a problem that is either internal or external to the 
packing plant.   
 
There is scope for work to improve the estimation of 
the starting microbial population sizes at the beginning 
of the supply chain at the packing plant. A packing 
plant routinely measures more than 1 microbe species, 
and if conditions change it would be expected that such 
a change might affect all the microbe species in some 
manner. That is, the starting population size frequency 
distribution is really a joint frequency distribution, 
potentially with some associated dependence. If this is 
the case then there is information in the changed 
frequency of one microbe species about the frequency 
of another microbe species. This information can be 
used to improve the accuracy of the size of the starting 
microbial population size. FoodQSMTM stores data 
from microbial measurements of samples at the 
packing plant into a database that makes retrieval for 
such analysis easy.   
 
The industrial food supply chain is uncontrolled in 
comparison to a laboratory environment. Important 
variables such as temperature and pH are not closely 
monitored as they are in a laboratory, even in a 
reasonably controlled environment, temperature and 
pH profiles over time are subject to random 
fluctuations and are known with some degree of 
uncertainty.   
 
The analysis of variance components is a technique 
developed for such circumstances. It is an essential tool 
in animal breeding, which deals with similar situations 
to the management of a food supply chain, but to date 
it has received little attention in predictive 
microbiology. The idea is that in the food chain there 
are no preferred temperature levels, but rather an 
ensemble of levels characterised by temperature being 
a random variable. In such a situation it is the variance 
of the temperature fluctuations in the supply chain that 
is of interest, and this is measured by the variance 



component of the variable of interest associated with 
temperature fluctuations. Clearly the (time dependent) 
value of such a variance component in a supply chain 
can be used to decide the value of actions to control 
spoilage, and also where in the supply chain to place 
the effort to achieve this. Covariance components 
between the model parameters associated with an effect 
like temperature are also important in the management 
of the supply chain to reduce spoilage. The 
methodology is presented in [6].   
 
One application has been presented in [6] for 
calculation of the variance and covariance components 
for the growth of Erwinia Carotovora subject to 
changing temperatures. In a relatively controlled 
experiment it was shown that the intra – class 
correlation was 0.8, meaning that temperature variation 
controlled 64% of the variation in the growth of this 
microbe.   
 
The utility of variance components is that they can be 
applied to calculate the value of taking action to control 
variation in variables affecting microbial growth in the 
industrial supply chain. For example, the question of to 
what degree the uncertainty in microbial population 
size can be reduced by reducing the temperature 
variation by a nominated amount can be addressed. 
This provides a basis for a cost benefit analysis of 
supply chain strategies aimed at managing food 
spoilage by allocating resources to better control some 
variables that can be controlled during food processing 
or storage. Variance component analysis provides an 
important link in applying laboratory results to the 
industrial food supply chain.   
 

III. CONCLUSION 
The industrial food supply chain imposes many 
challenges associated with variation and uncertainty 
that operate at different time scales. Fast variation is 
identified with rapid changes in variables like 

temperature, and in the application of an empirical 
model to quantitatively describe microbial population 
growth. Slow variation is associated with changing 
relationships among the microbial species involved, 
perhaps driven by seasonal effects, but also other 
factors that are typically unknown.   
 
This paper proposes a methodology for dealing with 
these issues, based on a probabilistic description that 
incorporates methods from QA procedures, and control 
engineering techniques based on model updating. 
These methods are currently incorporated into the 
software package FoodQSMTM for application in the 
meat industry.  
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