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Abstract—Identifying candidate genes related to complex traits or diseases and mapping their relationships
require a system-level analysis. Our approach that investigate co-expression relationships of genes related to
’marbling score’ trait and systemically analyze the network. We observed that our co-expression network has a
poer-law connectivity distribution as many other biological networks have. The hub nodes and structure of the
result network are constent with the prior information about marbling score. We also performed experimental
validation of the hub nodes between high- and low-marbled groups using qRT-PCR. This network-based
approach in livestock may an important method for analyzing the complex effects of candidate genes asssociated
with complex traits

Index Terms— Co-expression, Gene network, Marbling score, Power-law function

I.  INTRODUCTION

Gene expression data has been successful in understanding of relationships between genes involved in biological
mechanisms and predicting targetable genetic components associated with complex traits or, diseases states.
Microarray-based analysis provides differential expressed genes (DEGs) that were altered expression in a various
environmental condition under the transcriptome level. Until recently, many researchers have made great efforts to
investigate the overlap between genes expressed in a biological pathway and the chromosomal region identified by
genetic linkage could detect a candidate that turns out to be the casual gene (Mootha, Lepage et al. 2003).  Several high-
throughput technologies that were combined gene expression and genetic approaches such as Quantitative trait locus
(QTL) mapping. It is called ‘genetical genomics’ that is a powerful tool to elucidate gene and genome expression and
its effect in resulting phenotypes (Jansen and Nap 2001) . An integration of genetic and gene expression studies in a
system level accelerates the characterization of functional QTL. Several researches also shown that mRNA levels for
candidate genes are heritable, thus apply to genetic analysis (Brem, Yvert et al. 2002; Wayne and McIntyre 2002;
Schadt, Monks et al. 2003).
Many complex traits such as disease susceptibility, development, and agricultural product quality in animals are
controlled by the interactions of several or many QTL combined with environmental influences. Furthermore, patterns
of covariation in expression multiple loci can be used to build networks showing relationships between genes and
between genes and functional traits. These networks provide information of the genetic control of complex traits and
can help determination of causal genes where these effect gene function rather than gene expression (Haley and de
Koning 2006).

II.  MATERIALS AND METHODS

Our analysis involved in three main steps: (1) finding candidate genes from the Animal QTL database and analyzing
the results of microarray experiments from GEO (Gene Expression Omnibus) database; (2) using these genes and co-
expression information to construct co-expression network related to ‘marbling score’ trait; and analyzing the network
topology by visualization; (3) confirmation of gene expression results of hub genes using Quantitative real-time PCR
(qRT-PCR).

Identification of candidate genes associated with marbling score
To determine candidate genes associated with marbling score within QTL intervals, we obtained genomic positions

of ‘Marbling score’ trait using ‘QTL location by bp’ information from the Animal QTL database
(http://www.genome.iastate.edu/cgi-bin/QTLdb/BT/index). In the GEO database (http://www.ncbi.nlm.nih.gov/geo/),
all data from microarray experiments related to bovine were used: GEO series (GSE) 15544, GSE 15342, GSE 13725,
GSE 6918, GSE 10695, GSE 12327, GSE 9256, GSE 12688, GSE 11495, GSE 11312, GSE 7360, GSE 9344 and GSE
8442. All arrays were processed to determine the “Robust Multiarray Average (RMA) (Irizarry, Bolstad et al. 2003)”
using “affy” software package (Gautier, Cope et al. 2004). Expression values were computed in detail from raw CEL
files by applying the RMA model of probe-specific correction for perfect-match probes. These corrected probe values



were then subjected to quantile normalization, and a median polish was applied to compute one expression measure
from all probe values. Resulting RMA expression values were log2-transformed. The gene isoforms and genes
containing duplicate probes were excluded by using only those with the highest expression among the redundant
transcripts. Finally, we used 844 genes of 1260 genes associated with marbling score for the network construction.

Construction of co-expression network
In co-expression networks, we refer to nodes as genes those degrees that indicate the number of links connected by a

node. For unweighted networks, the correlation matrix contains binary information (connected = 1, unconnected = 0).
We extracted expression values of 844 genes and evaluated pair-wise correlations between the gene expression profiles
of each pair of genes using Pearson correlation coefficients. In order to minimize noise in the gene expression dataset,
an edge between two nodes in present if their absolute correlation coefficient exceeds a thresthold r =0.7. We identified
key drivers (i.e., hub genes) using network topology. To explore the relationship of nodes in the co-expression network,
the following measurements were used to reveal hub genes that play important roles in the network: (1) node degree (or
connectivity); (2) the betweenness centrality (BC); (3) the edge BC; and (4) the closeness centrality (CC) (Hwang, Son
et al. 2008). The degree of a node is the number of connections or edges the node has to other nodes. The degree
distribution of a network has a generalized power-law form p(k)  ~  k-r, which is the defining property of scale-free
network (Barabasi and Albert 1999).  The genes of highly connected nodes to nodes with few connections (hubs) play
an important role as a local property in a network (Barabasi and Oltvai 2004). A node with high BC has great influence
over  what  flows in  the  network  that  may play  major  roles  as  a  global  property  since  the  BC is  a  useful  indicator  for
detecting bottleneck in a network. For node k BC is the fraction of number of shortest paths that pass through each node
(Brandes 2001). We calculated BC as global properties according to all nodes of the network. The edge BC is defined in
the same method as BC that an edge is central if it is included in many of the shortest paths connected nodes. The CC
use information about the average shorted distance to the other nodes, which is calculated a node is 1/average distance
to all other node. The genes with high CC have the ability to contact any node of the network in the shortest possible
path. From the results of network topology analysis, we select the high degree nodes and high centrality (BC and CC)
nodes as the key drivers that are most associated with our interest trait in a network.

Confirmation of gene expression results by Quantitative real-time PCR (qRT-PCR)
We determine the weather association with expression levels and intramuscular fat content in m . longissimus tissue

of Korean cattle (Hanwoo). Twelve steers of each group with low-marbled group (9.54±1.35%) and high-marbled
group (20.84±1.52%) were used in this study for real-time PCR and statistical analyses. Total RNA was prepared from
each tissue sample (100 mg) with TRIzol reagent (Invitrogen Life Technologies, USA) and then purified using RNeasy
MinElute Clean-up kit (Qiazen, Valencia, CA, USA). RNA concentration was measured with a NanoDrop ND-1000
spectrophotometer (Thermo scientific, USA). The RNA purity (A260/A280)  was  over  1.90.  For  cDNA  synthesis,  2  µg
RNA was reverse transcribed in a 20 µl reaction volume using random primers (Promega, Madison, WI, USA) and
reverse transcriptase (SuperScript II Reverse Transcriptase, Invitrogen Life Technologies). Reactions were incubated at
65°C for 5 min, 42°C for 50 min, and then 70°C for 15 min to inactivate the reverse transcriptase. Real-time PCR was
performed using the 2X Power SYBR Green PCR Master mix (Applied Biosystems, USA) with the 7500 Real Time
PCR system (Applied Biosystems) using 10 pM of each primer. The PCR was run for 2 min at 50°C and 10 min at
95°C, followed by 40 cycles of 95°C for 10 s, and then 60°C for 1 min. Following amplification, a melting curve
analysis was performed to verify the specificity of the reactions. The end point used in the real-time PCR quantification,
Ct, was defined as the PCR threshold cycle number. A regression model was used to examine the association between
gene expression value and intramuscular fat content by lm function in R. This resulted in the following equation:

Expression = μ + IMF + Age + residual
where Expression is a normalized gene expression value and μ is an overall mean, IMF is intramuscular fat content of

each animal and Age is slaughtering age (months) as a covariate and also mRNA level of the beta-actin (ß-actin),
ribosomal protein, large, P0 (RPLP0) gene was introduced as a covariate (Hocquette and Brandstetter 2002).

III.  RESULTS AND DISCUSSION

Construction of co-expression network
We constructed co-expression network associated with marbling score. The nodes represent candidate genes obtained

from the animal QTL database and microarray data, and the links between nodes represent the association between
expression profiles. The network comprises 844 nodes: 216 isolated nodes and 668 nodes in 10 clusters, with largest
cluster containing 643 nodes. These clustered 643 nodes are connected via 4,344 interactions, which correspond to an
effective mean degree of 2.16. Degree is the number of nearest neighbors of a node and effective mean degree is the
average degree of all nodes except isolated nodes. The 643 nodes of the network are shown in Figure 1(a).

Analysis of network measures
The network follows a power-law (D(k)~k-r) degree distribution (Figure 1(b)), where r is the degree exponent and ~



indicates ‘proportional to’. Thus, our network has characteristics of scale-free networks whose degree distribution
approximates a power law. Highly connected nodes are statistically more significant in a scale-free network than in a
random graph. Most of biological networks were characterized by a small number of highly connected nodes, while
most other nodes have few connections (Barabasi and Oltvai 2004). The highly connected nodes act as hubs that
mediate interactions between other nodes in the network. The hub nodes and nodes with a large BC are summarized in
Table 1. The BC is indicator as the global central node. The effect of removing nodes of a large BC is similar to that of
removing hub nodes because nodes with a large BC has very correlated fashion that of hub nodes (Son, Kim et al.
2004). They are not hub nodes, they imply that a site of relatively more between all other sites. This means that sites are
advantageously located to act as intermediaries. Therefore, we confirmed that hub and large-BC nodes are located in the
core to a topological center of the network by calculating the CC.

Table 1. Hub nodes and nodes with large betweenness centrality (BC)
gene gene description Hub node large BC node

TMEM60 transmembrane protein 60 Yes Yes
CHAF1A chromatin assembly factor 1, subunit A (p150) Yes Yes
MCM4 minichromosome maintenance complex component 4 Yes Yes
FDX1L ferredoxin-1-like protein Yes Yes
MAEL maelstrom homolog (Drosophila) Yes
HINT1 histidine triad nucleotide binding protein 1 Yes
DPYD dihydropyrimidine dehydrogenase Yes
ELOVL4 elongation of very long chain fatty acids-like Yes

 (a)

(b)

Figure 1. Topological view of co-expression network associated with marbling score. (a) Co-expression network of
the marbling score. The edge indicates expression correlation above a threshold (0.7) between the nodes. The node
represents candidate genes related to marbling score. Light green represents genes for which there is a consistent result
from network analysis and experimental validation. (b) The degree distribution D(k) of the network follows a power-
law distribution.



Confirmation of gene expression results by Quantitative real-time PCR (qRT-PCR)
We investigated expression levels of ten candidate genes in m. longissimus muscle between two distinct

intramuscular fat content groups (Table 1). We firstly investigated expression levels of two genes, peroxisome
proliferator-activated receptor gamma (PPARG) and CCAAT/enhancer binding protein alpha (C/EBPa) as an indicator
for fat accumulation, which are the major transcription factor regulating adipogenesis (MacDougald and Lane 1995).
The mRNA expression levels of PPARG and C/EBPa were more highly expressed in the high-marbled group. In
present study, we identified two genes, transmembrane protein 60 (TMEM60) and dihydropyrimidine dehydrogenase
(DPYD), which were significantly up-regulated according to intramuscular fat content increased (P<0.05) (Figure 2).

Figure 2. Regression analysis between gene expression value generated by real-time PCR and intramuscular fat
(IMF) content. PPARG, peroxisome proliferator-activated receptor gamma; C/EBPa, CCAAT/enhancer binding
protein alpha; TMEM60, transmembrane protein 60; DPYD, dihydropyrimidine dehydrogenase.

IV.  CONCLUSION

We extracted data related to ‘marbling score’ trait from Animal QTL database and microarray experiments from the
GEO database and subsequently constructed co-expression network using Pearson’s correlation matrix that displayed
degrees with a power-law distribution, with an exponent of approximately -2. The hub genes were identified and
topologically centered with large-degree and BC in the network. We also confirmed that the expression of hub nodes
(TMEM60) and nodes with large BC (DPYD) were consistent with network-topology analysis.
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