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Abstract— In oil-based marinades, uniform suspension of particulates such as salt or spices requires a gel-like 

behavior of the matrix to prevent gravitationally driven separation (i.e. sedimentation). This can be achieved by 

adding an organogelator (solid fat) to liquid oil that converts the liquid oil into a solid fat-oil gel. In this study, 

different fat types were used as organogelator and the influence of their addition to a liquid oil on the 

physicochemical properties of the resulting oil-fat-dispersions assessed. Three higher melting fats and a lower 

melting palm fat were used. Addition of lower melting palm fat to raps oil led to formation of gels with a nearly 

transparent appearence. Gels were strong with high elastic (G’) and loss moduli (G”) but destabilized at low 

temperatures. Oil-fat-dispersions that contained high melting fats had a higher temperature stability but were 

substantially more opaque. Gels were mechanically weaker than those formed from low melting fats and thus 

were not able to keep spices suspended for prolonged storage periods. All oil-fat-mixtures exhibited a shear-

thinning behavior. 

 

Index Terms—oilgel, oil-fat-dispersion, fat, gelation, marinades 

 

I.  INTRODUCTION 

A very common and increasingly popular way of flavoring meat is by marinating them with spice/salt mixes 

(McEvoy, 2003). From a physical point of view, marinades may be simply dry powdered spice mixes that are rubbed 

into the surface of meats (so called dry rubs), or systems in which the spices are dispersed in a liquid phase. In the latter 
case, the liquid phase may consist of either water or oil. Oil based systems have shown to be particularly well suited for 

meat products that are grilled, since surface temperatures rise more quickly than in water based systems. In addition, 

such systems are able to carry lipid soluble flavors or dyes such as paprika essence in the liquid oil (Vintiloiu and 

Leroux, 2008). However, it is difficult to disperse the spices and salt evenly throughout the liquid and the particulates 

tend to gravitationally separate quickly. In contrast, in water-based systems, hydrocolloids may be added to increase the 

viscosity of the continuous phase thereby stabilizing the dispersed spices. Thus, in oil-based marinades, an 

organogelator needs to be added that converts the liquid oil into a more or less solid gel (DeMan and Beers, 1987). This 

is typically achieved by dispersing fat crystals in the liquid oil. As a result of the interaction of the dispersed solid fat 

crystals in the matrix, a three dimensional fat crystal network is formed (Hughes, Marangoni, Wright, Rogers and Rush, 

2009). The mechanical properties of the organogel are such that spices and even salt may be kept in suspension over 

long periods. Interestingly, although much is known about the structure of highly concentrated fat crystal networks 
(Narine and Marangoni, 1999), much less is known about fat crystal networks that contain low concentration of solid fat 

(< 10wt%). In particular, little is known about the impact of fat type on the appearance and mechanical properties of the 

resulting gel. Therefore the objective of this paper was to investigate the physicochemical properties of fat-oil gels 

prepared with different fat types at a solid fat concentration of 4.5wt%. 

II.  MATERIALS AND METHODS  

Materials. As organogelators, four different fats were used. Hydrogenated palm fat (Sett® P55) and hydrogenated 

vegetable fat (Sett® S69) were kindly donated by Cognis (Monheim, Germany), with melting temperatures of 55-60°C 

and 65-69°C respectively. Hydrogenated sunflower and hydrogenated rapeseed oil was donated by ADM (Hamburg, 

Germany), with melting temperatures of about 68-74°C, were used. As the liquid phase, a rapeseed oil was obtained 

from Bunge (Mannheim, Germany). 

Preparation of Oil-Fat-Dispersions. Oil-fat-dispersions were prepared by melting a mixture of palm fat and 

rapeseed oil at a mixing ratio of 1:2 at a temperature of 80°C. The hot melt was then dispersed in 5°C cold rapeseed oil 

using a rotor-stator colloid mill system. The colloid mill was fully evacuated using a vacuum pump to prevent 
dispersion of air bubbles in the oil-fat network. The oil-fat-mixture was sheared in the colloid mill for 7 min at 3000 

rpm with a gap setting of 50 and 350 µm, respectively. During the 7 minute dispersion time, temperature of the oil-fat-

mixtures increased from 5 to 27-33°C. All samples were prepared with 4.5 wt% solid fat and were stored for 2 days at 

20°C prior to physical property analysis.  

Polarized Light Microscopy. For determination of crystal structure and size, polarized light microscopy images were 
taken with an axial mounted Canon Powershot G10 digital camera (Canon, Tokyo, Japan) on an Axio Scope optical 
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microscope.A1 (Carl Zeiss Microimaging GmbH, Göttingen, Germany). Images were processed and analyzed with 

Gimp 2.6.6 (GIMP Development Team, USA) and Imagej 1.43n (Wayne Rasband, National Institutes of Health, USA). 

L*a*b*-Color Measurements. Color/transparancy of samples were anylyzed by colorimetry. L*, a*, b* of the CIE 
tristimulus color system of samples were measured with a chromameter CR-200 (Konica Minolta, Marunouichu Japan) 

to determine the optical properties of the samples. The chromameter was calibrated against a white calibration plate 

with tristimulus values: Y=93.7, x=0.3159, y=0.3321 at a D65 illumination. The samples were measured five times at 

different positions by direct imergence of the colorimeter probe in the sample at a sample layer thickness of 10mm 

against a white and black background. 

Rheological Analysis. A modular compact oscillatory rheometer (MCR300, Anton Paar, Stuttgart, Germany) with 

application software Rheoplus/32 V3.31, equipped with a plate-plate measurement system of 50 mm diameter and a gap 

setting of 0.5 mm, was used to perform all rheological experiments. Flow behavior was measured by increasing the 
shear rate of the plate plate system at 25°C logarithmically from 0.02s-1 to 100s-1. Mechanically stability of samples 

during heating was assessed by arecording shear stresses when samples were heated from 20°C to 80°C and sheared at a 

shear rate of 1s-1. 

Differential Scanning Calorimetry (DSC). The melting behavior of oil-fat-dispersions was recorded using a Perkin 
Elmer DSC 8500 (Perkin Elmer, CT, USA). 10-20 mg of the sample was placed in a 20 µl aluminum pan. Pans were 

sealed, inserted in the DSC and heated from 10 to 80°C at a rate of 20°C/min. Enthalpy of melting was calculated by 

integration of the heat flow rate during the phase transition.  

III.  RESULTS AND DISCUSSION 

Results showed that fat type significantly impacted all physical properties of oil-fat dispersions, including color, 

rheology and temperature stability. When oil-fat dispersions were analyzed under the polarized light microscope, 

significant differences in fat crystal size depending on fat type were observed. The images showed that the oil-fat-

dispersions that had been prepared with high melting fats formed considerably smaller crystals than the oil-fat 

dispersion that had been manufactured with the lower melting hydrogenated palm fat (Figure 1). An assessment of the 
size indicated that crystals of the high melting fats had average particle sizes of approximately 800 – 1000nm while the 

lower melting hydrogenated palm fat formed crystals of 3-5 m. 

Similarly, the transparency, indicated by ΔL* and the whiteness of the high melting fats decreased dramatically in 

oil-fat-dispersion that consisted of the hydrogenated palm fat, i.e. the system that consisted of the larger fat crystals 

(Figure 2). Light scattering theory suggests that maximum scattering of spherical particles dispersed in a liquid medium 

occurs at approximately 1 m (close to the average size of the palm fat crystals) and decreases again when particle 
become either smaller or larger (as is the case for crystallization of the higher melting fats). The difference in observed 

transparency and color of samples can thus be directly attributed to differences in the scattering behavior of fat crystals 

which governed by the size of crystals.  

The rheological properties of the oil-fat-dispersions also differed substantially. Firstly, all samples exhibited a shear –

thinning behavior that is, their viscosity during a continuous shear experiment continuously decreased as the shear rate 

increased (Figure 3). Figure 3 also shows that the flow curve of the oil-fat-dispersion that contained palm fat had the 

highest shear stress. It was also the only sample which had a slight peak in the curve, which is indicative of a plastic fat 

rheology. In contrast, oil-fat-dispersions with higher melting fats hat substantially lower viscosities and did not exhibit a 
plastic fat behavior. Moreover, the higher melting fat dispersions showed little difference in terms of steady shear 

rheology. Results may be due attributed to disturbances in flow fields by the presence solid fat particles. Deviations in 

the flow lines may cause frictional losses which increase viscosity. In addition, it appears that low melting fat crystals 

had an increased to flocculate, resulting in the formation of a fat crystal network with solid-like properties. The more 

gel like behavior of the lower melting fat dispersion was verified by dynamic rheological experiments (Figure 4). 

Measurement of G’ and G’ as a function of oscillation frequency showed that oil-fat-dispersions had viscoelastic 

properties, and exhibited at a minimum weak gel like properties. Palm fat samples had substantially higher G’ and G” 

values suggesting that gels were mechanically stronger. 

Differential scanning calorimetry and temperature scans on the rheometer both showed that the temperature stability 

of oil-fat-dispersions was increased when samples were prepared with the high melting solid fats. By use of these fats 

the melting point of the oil-fat-mixtures was increased from 45.23°C for the palm fat dispersion to more than 54°C 

(Table 1). The onset temperature of the solid to liquid transition of fats increased when high melting fats were used. 

The results of DSC analysis were confirmed by the rheological measurements of samples sheared at 1s-1 suring heating 

from 20 to 80°C. Here, viscosity of the samples decreased by more than 3 logs at a temperature of 46.1°C for oil-fat-

dispersion with palm fat while sample viscosity collapsed at 56.4-58.7°C in high melting fats dispersions. 

IV.  CONCLUSION 

Results of this study showed that selection of appropriate fat types is critical in the manufacturing of functional oil-fat  
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based marinades. The fat type impacts not only the maximum temperature stability, but simultaneous influences other 

physicochemical properties such as the appearance and rheology of the dispersions. Upon cooling, higher melting fats 

crystallize to form smaller, but more numerous crystals. In contrast, lower melting fat form crystals in oil that are larger 

and less numerous. Since both mechanical behavior and appearance is a function of particle size and concentration, bit 

properties are subsequently affected. This behavior is thus of substantial importance to manufacturers of meat 

marinades. While oil-fat-dispersions are useful for the suspension of spices and salt, their stability and appearance 

cannot be independently regulated and thus a complete optimization of all properties is difficult. An increased 

temperature stability thus may come at the price of loss of transparency and a reduced ability to keep spices and salt 

suspended.  
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TABLES AND FIGURES 

Table 1:  Results of DSC melting curve of oil-fat-dispersions prepared under shear with 4.5wt% solid fat of different 

fat types 

Fat Type Onset (°C) Peak (°C) ΔH (J/g) 

Palm fat 34.20 (±1.04) 45.23 (±0.15) 150.07 (±3.34) 

Vegetable fat 43.52 (±0.28) 54.13 (±0.33) 169.25 (±1.15) 

Sunflower fat 43.69 (±0.54) 54.04 (±0.22) 164.06 (±3.32) 

Rapeseed fat 45.46 (±1.13) 54.92 (±0.86) 167.84 (±4.74) 

 

  

  

Figure 1.  Polarized light microscopy images of the oil-fat-dispersions prepared with 4.5wt% solid fat crystallized under 

shear; A: hydrogenated palm fat, B: hydrogenated vegetable fat, C: hydrogenated sunflower fat, D: 

hydrogenated rapeseed fat 
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Figure 2: L*-Value of oil-fat-mixtures prepared with 

4.5wt% solid fat of different fat types under 

shear (measured against black background) 

and ΔL*: difference in L*-Value measured 

against black respectively white background 
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Figure 3: Flow properties of oil-fat-mixtures prepared 

with 4.5wt% solid fat of different fat types 

under shear: flow curve at 25°C; inserted 

graph: ηapp. at a shear rate of 39s-1 for the 

different fat types 
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Figure 4:  (Left) Viscosity as a function of temperature of oil-fat dispersions (Right) Differential scanning calorimetry 

of oil-fat dispersions  
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