Vitamin D₃ metabolism after ultra-high supplementation to beef animals to alleviate the effects of beta-agonist supplementation in feedlot cattle.

K.W. Moloto¹, L. Frylinck¹, P.E. Strydom¹, K.Y. Modika¹ and G. Koorsen²

¹Animal Production Institute, Agricultural Research Council, Private Bag X2, Irene 0062, South Africa ²University of Johannesburg, Department of Biochemistry, 524 Auckland Park, 2006, South Africa.

Abstract- To determine vitamin D₃ and derivative 25-hydroxyvitamin D₃ levels in liver, meat and fat of feedlot animals treated with vitamin D₃ to alleviate the effects of beta-agonist supplementation and correlate them with blood parathyroid hormone, calcium and phosphate. Vitamin D_3 is metabolised in the liver into 25-vitamin D₃ and amongst others it controls calcium and phosphate homeostasis being regulated by parathyroid hormone. This system plays a major role in controlling the level of calcium for proteases (calpains) activation that degrades the meat proteins. It is hypothesised that ultra-high vitamin D₃ supplementation should alleviate negative effects of beta-agonist supplementation, but toxic levels of vitamin D for human consumption is possible. In this study, 20 young steers received no beta agonist or vitamin D₃ (C), 20 animals each of 100 received zilpaterol hydrochloride (Z) and various levels (xM=xmillion units), days fed (yD) and withdraw period (zN)of vitamin D₃, C, Z, Z3D7M, Z6D7M, Z6D7M7N, Z9D1M treatment groups. Samples of blood and liver, meat and fat were analysed for vitamin D₃, 25hydroxyvitamin D₃, serum calcium, phosphate and parathyroid hormone. Levels of vitamin D₃ and 25hydroxyvitamin D₃ differed corresponding the amount fed and were mostly lower than the RDA for adults. There were high level outliers noticed in the liver of this groups 6D7M and 9D1M (higher than the average RDA for infants and children of 400 IU and 2000 IU for adults). Overall calcium and phosphate correlated positively, and parathyroid hormone negatively with vitamin D₃ and 25-hydroxyvitamin D₃ in meat and fat.

Keywords— Vitamin D₃, beta-agonist supplementation

I. INTRODUCTION

Beta agonists are fed to feedlot cattle and are known to affect meat tenderness (and other quality traits) negatively due to an increase in calpastatin activity. Various researchers suggest that supplementing extremely high levels of dietary vitamin D_3 for a limited time prior to slaughter improved meat tenderness by increasing blood calcium levels which play an important role in activating the calpain protease system [1][2]. Meat quality and more specific meat tenderness is the most important challenging factors to achieve by meat producers to meet consumer satisfaction.

There are various factors that can affect the quality of meat e.g. calcium content of the meat. The relationship between calcium level and vitamin D₃ content of the meat has been reported [3]. Vitamin D is one of the groups of fat soluble molecules appearing mainly in two forms being vitamin D_2 (ergocalciferol) and vitamin D_3 (cholecalciferol) cholesterol derivative. Vitamin D₃ is converted to 25vitamin D_3 in the liver by the enzymatic system in the mitochondria [3]. It is further metabolized in the kidney to 1, 25-hydroxyvitamin D_3 . Metabolism of 25-hydroxyvitamin D_3 in the kidney is regulated by hormones and some ions. Parathyroid hormone is one of the hormones which is said to regulate the metabolism of 25-hydroxyvitamin D_3 by triggering 25-hydroxyvitamin the activity of D3- 1α -hydroxylase. This active metabolite (1α , 25hydroxy-vitamin D₃) exerts its action by binding to the nuclear proteins called vitamin D receptors. After binding they alter the rate of transcription of target genes. The proteins transcribed then carry the real functions of vitamin D_3 [4] which is the maintenance of serum calcium and phosphorus homeostasis, [6].

Methods have been developed to extract and quantify the amount of vitamin D in various food sources. One of the methods is by means of high performance liquid chromatography (HPLC) which determines the total amount of vitamin D content of a particular food source. As any other biomolecule vitamin D taken at high dose can results in vitamin D intoxication. Some symptoms of vitamin D toxicity are a result of hypercalcemia caused by increased intestinal calcium absorption.

To enable the understanding of the metabolism of Vitamin D in beef animals and whether there is an advantage in the treatment of the animals to alleviate the toughening effect of beta-agonisttreatment on the resultant meat product, without being detrimental to health safety, the different levels of Vitamin D metabolites, calcium- and phosphorus levels, parathyroid hormone were quantified.

II. MATERIALS AND METHODS

In this study, 20 young steers received no beta agonist or vitamin D_3 (C), 20 animals each of 100 received zilpaterol hydrochloride (Z) and various levels (xM=x million units), days fed (yD) and withdraw period (zN) of vitamin D_3 , i.e. C, Z, Z3D7M, Z6D7M, Z6D7M7N, Z9D1M treatment groups. Samples of blood and liver, meat and fat were analysed for vitamin D_3 , 25-hydroxyvitamin D_3 , serum calcium, phosphate and parathyroid hormone. The samples were liver, meat (*M. longissimus lumborum*), fat and blood. The samples were frozen at -20 °C till further analysis.

A. Vitamin D_3 and 25-vitamin D_3 analyses

Vitamin D_3 and 25-vitamin D_3 were assayed by the HPLC method adapted from [5] with modifications [6]

A 200 μ l of vitamin D₃ extract was injected in Shimadzu HPLC (JAPAN) equipped with Reservoir Tray, Prominence Diode Array Detector with a thermostatic standard cell according to Moloto et al., (2010) [10]. Vitamin D₃ was quantified from its peak height using vitamin D₂ as an internal standard. Quality control tests were done according to [10]

B., Calcium, phosphate and parathyroid hormone analyses.

Serum calcium and Phosphorus concentrations were analysed by means of colorimetric assay kit (Roche, Mannheim, Germany). Plasma parathyroid hormone levels (PTH) were determined by electrochemiluminescence immunoassay employing a sandwich test principle on a Modular Analytics E 170 (Roche Diagnostic Systems, Nutley, NJ).

C., Statistical analysis

Data was analyzed by Analysis of Variance (ANOVA), for a split-plot design [7]

III. RESULTS AND DISCUSSION

Feeding high levels of vitamin D_3 to beef animals may subject them to accumulation of the compound in the liver and meat and other tissue cells. In this study vitamin D₃ supplementation exerted different effects in the studied tissues as shown in Table 1. All different Vitamin D₃ supplementation showed tremendous increase in liver vitamin D₃ and a slight increase in liver 1, 25-vitamin D₃. Liver, meat and fat showed differences in metabolism of vitamin D₃. Liver is the tissue that has the highest accumulated by vitamin D₃. The supplementation of 7 million IU for six days resulted in approximately 74 fold increase of the liver Vitamin D_3 and 8 fold increases in the meat when compared to the un-supplemented animals. Before 1997, the recommended dietary allowance of vitamin D (RDA; 3) for infants and children was 10 g (400 IU) and for adults 50 g (2000 IU) and had long been considered safe and effective in preventing rickets [8]. On contrary the recent studies shows that the dose that was first presumed to be toxic was not. Hathcock [9] reviewed the levels (400 IU) that were thought to be upper limit for Vitamin D_3 and found that actually newer clinical trial data were sufficient to show that vitamin D is not toxic at intakes much higher than previously considered unsafe. He found that toxicity was absent in healthy adults that used vitamin D dose $\geq 250 \ \mu g/md$ (10 000 IU). So depending on the view point taken the high vitamin D_3 in the liver and fat could be toxic or not, the Z3D7M and Z6D7M treatment groups exceeded the average RDA of 400 IU which is equivalent to $10 \,\mu g$. None the less there were high level outliers noticed in the liver for groups 6D7M and 9D1M and therefor the safety of those tissues for human consumption or not should still not be taken lightly and should be investigated.

Vitamin D_3 supplementation did not have a significant effect on the different increasing blood calcium levels in the highly supplemented group (7 million IU) that is justified by the low blood parathyroid hormone. Parathyroid hormone is secreted when blood calcium is very low. Even though the liver and the meat of the highly supplemented group (7 million IU) had high vitamin D₃ levels but fairly less blood calcium than untreated group, this scenario has been discussed by [10], explaining that most of the circulating vitamin D_3 is bound to the vitamin D binding proteins. Protein bound vitamin D metabolites have limited access to target cells and hence increased half-life in circulation. Thus, vitamin D and metabolites have high half-life in circulation. Only free fractions of vitamin D are metabolized and tissue availability of vitamin D is determined by the free fraction like most other hormones. Similarly [11] also found that feeding high Vitamin D₃ on lambs did not improve the tenderness or aging characteristics of lamb muscles. He suggested that other factors, such as the hormone calcitonin, may be regulating calcium concentrations and limiting its deposition in muscle tissues. Further research is needed to understand calcium regulation to determine how vitamin D_3 can be used as a tool to improve tenderness.

IV. CONCLUSION

The results of supplementation mostly 7 million IU/animal.day in this study shows high accumulation of vitamin D_3 in liver and all pose potential toxicological hazards. The same results has been demonstrated by [2] and suggested that liver from supplemented animal specifically the 7 million IU/animal.day should be eliminated from the food chain and producers should be discouraged from using this rate of supplementation. In contrast it was [10] suggested that vitamin D intake should be higher to achieve additional benefits from this vitamin at higher levels than previously recognized

ACKNOWLEDGEMENT

I would like to acknowledge the following: the biochemistry staff and the analytical chemistry laboratory of ARC, The Red Meat Research and Development Trust of SA – project committee for funding the project.

REFERENCES

- Karges K, Brooks J.C, Gill D.R, Breazile J.E, Owens F.N, and Morgan J.B (2001) Effect of supplemental vitamin D3 on feed intake, carcass characteristics, tenderness, and muscle properties of beef steers. Am J Anim Sci 79:2844-2850.
- Montgomery J. L, King M.B, Gentry J.G, Barham, A.R, Barham B.L. Hilton, G.G, Blanton J.R, Horst R.L, Galyean M.L, Morrow K.J, Wester D.B. and Miller, M.F (2004a) Supplemental vitamin D₃ concentration and biological type of steers. II. Tenderness, quality, and residues of beef. Am J Anim Sci 82:2092–2104.
- Yoshida N, Yoshida T, Nakumura A, Monkawa T, Hayashi M., and Saruta T (1999 Calcitonin induces 25-hydroxyvitamin D3 1α-hydroxylase mRNA expression via Protein Kinase C Pathway in LLc-PK cells. J Am Soc Nephrol 10:2474-2479.
- Healy K.D, Zella J.B, Prahl J.M, and Deluca H.F (2003) Regulation of murine renal vitamin D receptor by 1,25-dihydroxyvitamin D₃ and calcium. PNAS 100:9733-9737
- 5. Jakobsen J, Clausen I, Leth T, and Ovesen L (2004) A new method for the determination of vitamin D_3 and 25-hydroxyvitamin D_3 in meat. J food Comp Anal 17:777-787 DOI 10.1016/j
- Moloto K.W, Frylinck L, Strydom P, Pretorius B and Koors G (2011) Method to determine levels of vitamin D and its metabolites after feeding of high levels of vitamin D3 to beef animals to alleviate the effects of beta-agonist supplementation in feedlot cattle. (2010) 05-09 December Proceeding of International Conference of Analytical Science. Stellenbosch South Africa. p 180
- 7. GenStat® VSN International, Hemel Hempstead, UK; Payne, Murray, Harding, Baird, & Soutar (2007)
- Vieth R (1999) Vitamin D supplementation, 25hydroxyvitamin D concentrations, and safety^{1.2}. Am J Clin Nutr 69:842–56.
- Hathcock J.N, Shao A, Vieth R, and Heaney R. (2007) Risk assessment for vitamin D^{1,2}. Am J Clin Nutr 85:6-18
- Kochupillai N (2008) The physiology of vitamin D. Indian J Med Res 127:256-262.
- Boleman C.T, Mckenna D. R, Ramsey W.S, Peel R.K, and Savell J.W (2004) Influence of feeding vitamin D3 and aging on the tenderness of four lamb muscles. Meat Sci 67:185–190 DOI 10.1016/j

Table 1. Least square mean values and standard errors of means (SEM) for vitamin D_3 and derivative 25-hydroxyvitamin D_3 levels in liver, meat and fat of feedlot animals treated with different levels of vitamin D_3 to alleviate the effects of betaagonist supplementation.

Vitamin D_3 treatment $\times 10^6$ IU/(animal .day)								
Treatment	Z3D7M	Z6D7M	Z6D7M7N	Z9D1M	Control(C)	Zilmax(Z)	SEM ^e	P-value
Liver µg/10	0g							
Vit-D3	48.7 ^c	74.4 ^d	10.7 ^b	16.9 ^b	0.8^{a}	1.7 ^a	3.014	< 0.001
25-Vit-D ₃	0.086^{b}	0.162^{d}	0.120°	0.080^{b}	0.060^{a}	0.095^{b}	0.006	< 0.001
Meat µg/100)g							
Vit-D3	4.78 ^b	8.39 ^c	4.23 ^b	3.71 ^b	0.8^{a}	1.74^{a}	0.418	< 0.001
25-vit-D ₃	0.536 ^a	1.023 ^b	0.702^{a}	1.023 ^b	0.708^{a}	0.570^{a}	0.072	< 0.001
Fat µg/100g								
Vit-D ₃	13.65 ^{bc}	18.44 ^c	16.61 ^c	11.45 ^b	3.94 ^a	2.31 ^a	1.633	< 0.001
25-vit-D ₃	0.336 ^b	0.415 ^c	0.404 ^c	0.274^{ab}	2.862 ^b	2.886 ^b	0.023	< 0.001
a,b,c,d	lifforant auna	rearinte in	a row shows	aignificar	t difference	(<0.001)		

^{b,c,d} Different superscripts in a row shows significant difference (<0.001)

^e Standard error of the mean

Table 2 Effect of supplementation on serum calcium, phosphate and parathyroid hormone (PTH)

Treatment	Z3D7M	Z6D7M	Z6D7M7N	Z9D1M	Control(C)	Zilmax(Z)	SEMe	P-value
Calcium mg/100ml	2.522 ^a	2.567 ^a	2.715 ^b	2.781 ^b	2.862 ^b	2.862 ^b	0.063	< 0.001
Phosphate mg/100ml	2.836	2.920	2.926	2.945	2.586	2.541	0.091	0.003
PTH pg/100ml	18.1 ^a	22.9 ^a	25.4 ^{ab}	37.1 ^b	61.6 ^c	82.2 ^d	4.36	< 0.001

a,b,c,d Different superscripts in a row shows significant difference (<0.001)

e Standard error of the mean

Table 3. Correlation-matrix showing how vitamin D_3 and derivative 25-hydroxyvitamin D_3 levels in liver, meat and fat correlate with blood parathyroid hormone (PTH), calcium and phosphate.

	Vit-D ₃	Vit-D ₃	Vit-D ₃	25-Vit-	25-Vit-	25-Vit-D ₃
	liver	meat	fat	D ₃ liver	D ₃ meat	fat
Calcium	0.196	0.243	0.354	0.117	0.126	0.023
Phosphate	-0.135	0.082	-0.099	-0.007	-0.400	0.241
PTH	-0.326	-0.477	-0.400	-0.244	-0.174	-0.338

Values in bold correlates significantly (p<0.05).