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Abstract – Meat quality (MQ) is a complex 

phenotype assed by different indicators measured 

by using costly and/or invasive analyses. Early post-

mortem (p.m) biomarkers of MQ refer to single 

indicators, but not to the overall quality of pork 

samples. This study aimed at determining pork 

quality classes combining both sensory and 

technological dimensions. Then, combinations of 

biomarkers discriminating between quality classes 

were identified to further predict quality level of 

pork loins. Sensory, technological and gene 

expression data were collected on 100 pig 

Longissimus[b1] (8th dorsal to 2nd lumbar vertebrae 

level) samples exhibiting a wide and gradual 

variability in MQ. Scientific and statistical 

approaches were combined to select indicators and 

their thresholds specifying quality classes differing 

in sensory and technological attributes: low 

(=defective; L), acceptable (A) and extra (E) quality. 

Gene expressions were used as predictive variables 

in a generalized linear model to discriminate quality 

classes. The best model (selected with the Akaike 

information criterion) included expression levels of 

12 genes (18% error rate on known data, 24% after 

cross validation). Besides, a classification tree to 

predict quality categories was developed, including 

six branches with only five genes but a higher error 

rate than the linear model. External validation of 

predictive models is currently undertaken using 250 

commercial pig samples. 
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I. INTRODUCTION 

 

Sensory and technological attributes of pork are 

determined by complex interactions between pig 

genotype, animal rearing conditions, slaughtering 

conditions and meat processing techniques. Meat 

quality (MQ) is thus a complex phenotype that can 

be determined only few days after slaughter 

considering physical, biochemical, or sensory 

indicators assessed by (usually) costly and 

invasive analyses. MQ is therefore difficult to 

predict, and presents a high variability even when 

controlling variation factors. 

Functional genomics has been recently used in 

various research programs to identify early post-

mortem (p.m.) biomarkers of MQ in various 

species [1, 2]. In a recent study, 100 pigs from two 

different breeds and various production systems 

were used, giving rise to pork loin samples 

(Longissimus muscle [b2] , LM, 8th dorsal to 2nd 

lumbar vertebrae level) exhibiting a wide and 

gradual variability in technological and sensory 

quality [3]. Combining MQ data with 

transcriptomic profiles of a subset of 50 LM 

samples taken at 30 min p.m., biomarkers of MQ 

traits were identified and further validated by RT-

PCR on the remaining 50 LM samples. Sixty 

associations between gene expression and MQ 

levels were thus validated, with expression of one 

gene explaining up to 46% of the phenotypic 

variation of a single MQ trait [3]. These results are 

promising but highlight that predictive capacity of 

biomarkers should be improved to foresee the 

development of control tools for pork industry. 

Therefore, we recently considered another 

approach based on the identification and validation 

of biomarkers of sensory and technological MQ 

classes, i.e. low, acceptable or extra pork quality 

levels [4]. The final objective is to propose 

molecular tools to classify carcasses or primary 

cuts early after slaughter, according to their 

predicted sensory or technological quality level. 

The aim of the present study was to determine 

sensory and technological pork quality classes, 

and then to determine combinations of early p.m. 

biomarkers discriminating between quality classes, 

in order to predict quality level of pork loins in 

meat industries.  
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II. MATERIALS AND METHODS 

 

Pork quality classes. To establish pork quality 

categories based on sensory and technological 

attributes, data of MQ traits recorded on 100 loin 

samples (LM, fresh raw and cooked meat) 

including pH 30 min p.m., ultimate pH (pHu), 

colour: lightness (L*), saturation (C*) and hue 

angle (h°), drip loss, cooking loss, intramuscular 

fat (IMF) content, shear force, and tenderness, 

juiciness and flavor scores determined by a trained 

panel, were considered. Scientific expertise and 

literature data [5, 6, 7, 8, 9, 10, 11] as well as 

statistics (principal component analysis (PCA), 

multiple correspondence analyses and ascending 

hierarchical classification (FactoMineR package, 

R software 3.1.1, R Foundation for Statistical 

Computing, 2014)) approaches were combined to 

select MQ indicators and their threshold values 

leading to define different quality classes [12]. 

Differences in MQ traits between categories were 

analyzed by Anova (proc GLM, SAS software 
version 9.4, 2013, SAS Inst., Cary, NC). 

 

Gene expression levels of LM samples. Available 

dataset of expression level (RT-PCR) of 40 genes 

previously identified and validated as biomarkers 

of single MQ traits [3] and obtained on n=98 of 

the LM samples was used. Firstly, the dataset of 

gene expression level was checked for outliers 

data by PCA analysis (FactorMineR package, R 

software). Because 52 LM samples exhibited 

missing values for at least one gene expression 

level, data were imputed using multidimensional 

analysis. Lack of any variation in data distribution 

after imputation was verified (missMDA package, 

R software) [13]. 

Five samples exhibiting at least 8 missing values 

for gene expression data were then discarded from 

the data set. Finally, gene expression data of 93 

LM samples was considered for further analyses.  

 

Molecular biomarkers discriminating pork quality 

classes. To predict the quality level of any given 

pork sample based on its expression levels of few 

genes, a multinomial generalized linear model was 

adjusted using a stepwise selection with the 

Akaike information criterion (multinom and step R 

functions). The chosen probability cut-point to 

predict the quality class “A” on the multinomial 

model was 0.3. Afterwards a cross validation was 

undertaken using the “leave-one out” method to 

estimate the error rate of the selected model. 

Another strategy to predict the belonging of a 

given sample to any quality category, based on 

decision tree, was also applied. Classification trees 

were established (tree R function) and submitted 

to cross validation, which resulted in a selected 

tree with six branches. 
 

III. RESULTS AND DISCUSSION 

 

Pork quality classes. Scientific expertise and 

literature allowed to highlight important MQ traits 

to be considered to discriminate pork quality 

levels, i.e., pH 30, pHu, L*, drip loss, IMF, and 

tenderness score. Descriptive statistical methods 

highlighted relationships between MQ traits 

thereby allowing select the most discriminant ones. 

Finally, 4 MQ traits: pH 30, pHu, drip loss and 

IMF and their threshold values were considered, to 

define 3 quality classes: low (impaired) quality (L; 

pH30 < 6.10 or pHu 24h < 5.50, i.e. PSE and PSE-

tendency or acid and acid-tendency meat, 

respectively) and among non-defective pork, 

acceptable (A; drip ≥ 1% or IMF < 2.5%) and 

extra (E; drip < 1% and IMF ≥ 2.5%). The classes 

were first defined using 98 pork samples under 

study. Then the 5 LM samples with at least 8 

missing data for gene expression were removed, 

leading to a total of 93 pork samples with both 

MQ and gene expression data. The characteristics 

of pork quality classes are presented in Table 1.  

Table 1. Characteristics of pork quality classes 

Quality trait Low Acceptable Extra Sign1. 

n 34 25 34  

pH 30 2 6.39 a 6.48 b 6.59 c *** 

pHu 2 5.43 a 5.57 b 5.66 c *** 

Drip loss, % 2 2.52 c 1.84 b 0.65 a *** 

IMF, % 2 2.90 a 2.71 a 3.67 b ** 

Lightness 54.3 b 51.3 b 49.5 a *** 

Hue angle 37.6 b 35.8 b 31.5 a *** 

Shear force, N 28.8 29.2 26.2 P=0.11 

Tenderness 3 4.07 a 4.40 ab 4.92 b *** 

Juiciness 3 2.81 a 3.19 ab 3.36 b * 

Flavour 3 4.24 4.40 4.43 ns 

1 ***: P<0.001; **: P<0.01; *: P<0.05; ns: P>0.05. In a row 

values with different letters differ (P<0.05) 
2 Traits used to establish pork quality classes.  
3 Scored on a 0 (low) to 10 (high intensity) scale. 
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As expected, the L class exhibited the lowest 

pH30 and pHu values and the highest drip, and the 

E class the highest pH values and lowest drip, the 

A class being intermediate. IMF content was 

higher in E, but did not differ between L and A 

classes.  

Regarding the other MQ traits not used for class 

determination, the E class showed lower L* and h° 

values, indicating redder meat, than L and A 

classes. Differences in shear force between classes 

did not reach significance, but the E class showed 

the highest tenderness and juiciness scores and the 

L class the lowest, the A being intermediate. 

Altogether this indicates that the 3 classes thus 

defined actually correspond to varying levels of 

both sensory and technological qualities of fresh 

pork reflecting consumer and industry demands.  

 

Biomarkers discriminating pork quality classes.  

The multinomial generalized linear model to 

predict pork quality classes selected the expression 

levels of 12 genes (GLOD4, PPARd, GUP1, 

HSPD1, YDJC, CCDC91, NAP1, FOS, LIPE, 

SPARC, IGF1, MCAT) as best predictive 

variables. The error rate estimated on the known 

data was 18%. After cross validation using the 

“leave-one-out” method, the error rate was 24%.  

These genes were associated to various biological 

functions known to play important roles in the 

determination of technical and sensory quality of 

fresh pork [3], including energy metabolism at 

mitochondrial level (GLOD4), lipid metabolism 

(PPARd, LIPE, MCAT), carbohydrates 

metabolism (YDJC), control of gene expression 

(GUP1), cell regulation and apoptotic processes 

(HSPD1), protein transport (CCDC91), calcium 

transport (FOS, SPARC), muscle structure and 

contraction (SPARC), muscle hypertrophy (IGF1). 

External validation of this discriminant model (in 

progress) is undertaken using 250 LM samples 

issued from various pig crossbreeds produced in 

French commercial pork chains and thus totally 

different from the 93 samples used for modelling. 

Gene expression level of these LM samples will be 

quantified and using the above equations, 

predicted quality class of each sample will be 

compared with its quality level determined on the 

basis of its actual pH30, pHu, drip and IMF values. 

Besides, the decision tree method led to different 

trees varying in number of branches and genes 

involved. However, cross validation step 

highlighted that the minimum misclassification 

was obtained with trees including between 4 and 6 

branches. Therefore, a tree including 6 branches 

and 5 genes (GLOD4, ZNF24, FABPH, YDJC and 

PPARd) has been retained (error rate of 41%) 

(Figure 1).  

Figure 1. Decision tree for determination of pork 

quality classes according to LM expression level of 5 

genes  

 

Genes involved in decision tree also belong to 

important muscle features associated to 

determination of pork quality, such as lipid 

metabolism (FABPH, PPARd), mitochondrial 

activity (GLOD4), carbohydrates metabolism 

(YDJC) and transcription (ZNF24).  

External validation of this model will be also 

undertaken using the aforementioned 250 LM 

samples issued from commercial pork chains, even 

though present results suggest a better prediction 

accuracy of linear model than decision tree to 

classify pork samples in quality classes. 

 

IV. CONCLUSION 

 

In conclusion, this study shows a classification in 

3 classes of MQ including the sensory and 

technological attributes of fresh pork. The capacity 

of both the multinomial generalized model and the 

tree method to predict the belonging of a given 

pork sample to a quality class by gene expression 

is very accurate. These models are currently 

evaluated for external validation using 250 

commercial pork samples before being used as 

predictive tools in meat industry.  
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