ANALYSIS OF GENETIC CHARACTERISTICS OF WUZHUMUQIN SHEEP MYOSTATIN GENE

Jin. Feng¹, Q. Zhixin², S. Qimuge², W. Rihan², SU. He³, Geriletu⁴, B. Gerelt^{1*}

¹College of Animal Science, Inner Mongolia Agricultural University, 010018 Hohhot, China

²College of Food Science and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, China

³Inner Mongolia xilihot husbandry bureau, 026000 Xilihot, China

⁴College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018 Hohhot, China

Abstract -Wuzhumuqin sheep was employed in this study. We used the PCR technique to amplified the Myostatin (MSTN) gene of wuzhumuqin sheep, and then carried out cloning and sequencing. Full-length sequence of MSTN gene was obtained by Sequence analysis using molecular biology software. The results showed that wuzhumuqin sheep MSTN gene had 3 exons and 2 introns. The size of exon I, exon IIand exon III were 373, 374, 381bp, respectively. The size of intron I and intron II were 1833, 2030bp, respectively. The Full-length sequence of CDS was 1128bp and composed of 375 amino acids. Theoretical molecular weight of encoding protein of MSTN gene was 42.8 kDa and PI was 7.01. Highest level of Leu (9.9%) was observed and followed by Lys (8.3%). The secondary structure of MSTN protein was mainly a-helix and random coil structure. which have characteristics of transmembrane protein. The transmembrane domain located in AA6-AA23 and showed secretion signal peptide structure that amino acids sequence was MQKLQICVYIYLFMLIVA. MSTN may be characterized with TGF-ß family.

Key Words – Wuzhumuqin sheep, Myostatin, RT-PCR

I. INTRODUCTION

Myostatin (MSTN) gene was first identified by Mcpherron et al.^[1] in 1997. It is a member of transforming growth factor (TGF $-\beta$) family that plays an important regulation role in muscle growth ^[2]. MSTN negatively control the muscle cell growth and development through inhibition of transcriptional activity the of myogenic differentiation (MyoD) members. Its expression was negatively correlated with the change of the muscle weight ^[1]. Scientists have been doing research on the MSTN gene in a variety of animals, such as mouse^[3], cows^[4], goats^[5], zebrafish^[6],

chickens^[7] and other species. Myostatin knockout mice showed a dramatic increase of skeletal muscle mass ^[1]. The double muscle breeds of cattle carrying the natural mutations in the myostatin gene have significantly more muscle mass than standard breeds. It makes double muscle cow meat production is 1.3 times higher than that of ordinary cow^[8]. Kocamis *et al.*^[9] reported that they have found detectable MSTN mRNA expression in skeletal muscle of porcine fetus in their pig MSTN study. Rodgers et al. ^[10] also reported that there are two types of MSTN in the american trout, one type was specifically expressed in the ovary, and the another type was expressed in the red muscle and brain. The research on the MSTN gene was not only limited in animals, there were some studies also pointed to human^[11].

The wuzhumuqin sheep is a kind of excellent Mongolian sheep stock that formed by the long term breeding in Xilin-Gol grassland in Inner Mongolia. The wuzhumuqin sheep usually has longer body than other sheep breed that caused by the more spinal section number (usually 14 ribs in pure breed of wuzhumuqin sheep), and which is an extremely valuable genetic pool for the genetic study. Our previous study for the first time reported the role of MSTN expression changes in the growth of wuzhumuqin sheep under the natural grazing conditions. But the whole MSTN gene cloning and analysis on this breed has not been reported.

In this study, we selected the wuzhumuqin sheep under the natural grazing condition as our objective, and cloned and sequenced the MSTN gene of purebred (multiple thoracic individual) wuzhumuqin sheep, and sequence alignment with other species, meanwhile speculated the secondary and tertiary structures and some physical and chemical properties of the coding protein. The study will provide reliable information on the establishment of wuzhumuqin sheep gene library, and also provide the theoretical basis for the improvement of local sheep breed and the study on the usage of MSTN gene as a molecular breeding technology of wuzhumuqin sheep.

II. MATERIALS AND METHODS

Genomic DNA was extracted by Blood Genomic DNA Extraction Kit (TIANGEN) from wuzhumuqin sheep blood samples.

PCR reaction: 50 ul reaction system is applied in this experiment, the concentration and volume of each component are as follows: the template DNA 4 ul, forward primer (10 um) 2 ul, reverse primer (10 um) 2 ul, premix TaqTM 25 ul, ddH2O 17 ul. The PCR reaction conditions: 95 °C modified 5 min, 98 °C degeneration 10 s, 30 s annealing, 72 °C for extension 1 min, 30 cycle, 72 °C for extension 10 min, 4 °C heat preservation, amplification products with 1% agarose gel electrophoresis detection.

III. RESULTS AND DISCUSSION

DNAMAN V6.0 software was used for sequence splicing and obtained wuzhumuqin sheep MSTN gene sequences. Sequence analysis revealed that the wuzhumuqin sheep MSTN gene spanned 5068bp, including partial sequence region, all exons and intron sequences. Wuzhumuqin sheep MSTN gene contained three exons which size were 373bp, 374bp, 381bp and two introns which size were 1833bp, 2030bp, respectively. Exon I contains the start codon ATG, exon III contains a stop codon TGA. BioEdit biological analysis revealed that the full length CDS of wuzhumuqin sheep MSTN gene sequence was 1128bp and composed of 375 amino acids (Fig1) compared with other animal species gene sequence(Table1). DNAMAN biological software was used to analysis the wuzhumuqin sheep MSTN gene coding region of whole nucleotide sequences compared with other sheep and goat. Results showed that one base substitution $(C \rightarrow T)$ was

detected in 1122 site of wuzhumuqin sheep MSTN

gene coding region compared with other sheep. As well as it compared with goat MSTN gene coding region, six base substitution $(T \rightarrow C)$ in 126 site, $(A \rightarrow G)$ in 189 site, $(G \rightarrow A)$ in 329 site, $(C \rightarrow T)$ in 903 site, $(C \rightarrow T)$ in 930 site, $(A \rightarrow C)$ in 1094 site, were identified in wuzhumuqin sheep MSTN gene coding region, respectively. In addition. similarities between amino acid sequence of wuzhumuqin sheep and other sheep MSTN gene showed 100%, while similarities between the goat, cattle, horse, pig, human, chimpanzee, baboon, rat, dog, turkey, chicken, rabbit and zebrafish were 99.5%, 93.3%, 94.4%, 95.5%, 94.1%, 94.4%, 94.1%, 90.9%, 93.1%, 88.0%, 87.7%, 94.7% and 66.8%, respectively (Table1).

The amino acid sequences were analyzed by ProtParam and obtained the basic parameters of MSTN precursor protein, wuzhumuqin sheep MSTN gene encoding protein formula was C1912H3018N512O561S21, theoretical molecular weight was about 42.8 kDa, PI was 7.01; the amino acids leucine occupied maximum content of 9.9%, lysine was 8.3% followed. Aqueous solution extinction coefficient at 280 nm was approximately 51 ~630. Instability coefficient of the protein was 44.87, the average hydrophilic coefficient was 0.411.

SOPMA biological analysis predicted wuzhumuqin sheep MSTN gene encoding protein secondary structure, original secondary structure of α -helical (Alpha helix), β -fold (Extended strand)occurred: number of α -helix was 94, representing 25.07% of all structures; number of β -folded was 77, representing 20.53% of all structures; especially number of random coil was 183. representing 48.80% of all structures. software analysis TMpred predicted transmembrane structure of wuzhumuqin sheep MSTN gene encoding protein, results showed that wuzhumuqin sheep MSTN gene encoding protein belongs to the transmembrane protein, AA6 -AA23 was transmembrane region (theoretical values were 1422, significantly higher than the software default 500) (Fig. 2). Gentry analysis predicted that wuzhumuqin sheep MSTN gene encoded a protein having a secretion signal peptide structure, the amino acid sequence was MQKLQICVYIYLFMLIVA. This result was consistent with reports of Helen [12] (Fig 3).

		1	Q			20			31	0		10.1	١Q -			- 54	1.1		60			*	110			620			63	٥		6	10		. 1	\$50			660
ATO	CAJ	444	CTO	CAJ	LAT.	CTT	TOT	TTA	TAT	TTN	DOT	TT	TAT	9CT	oc:	Tat	TOO	TOO	ACCOR	00	TAT	TIC	ioca	040	CAT	TGA	IST	222	CAC	AGT.	111	SCA	122	CTO	(CTC	:222	CN	CCT	CAA
. 16	ò	ĸ	Ľ	0	1		V	Y	I	Y	11	- 2	M	1	1	1 1	1.2	1	3 P	G	1	1	1 0	1 3	1	D	v	7	. 7	v	1	9	N	*	L	x	0	P	E
		÷.,	0			80			90	6		11	50			110	1		120				70			680			69	٥		71	00			120			720
OTO	DA:	CTO	221	1034	1AA	CAO	COA.	9CA	0334	ADE	ua:	TOTI	203	u	11	1000	oct	OTO	TAAT	TC	caj	CTI	AGG	CAT	TGA	AAT	CAA	AGO	ITT	1.51	rga.	SAAS	1001	(CA)	GAT	CTT	(GC1	OT	400
v	D	1	3	x	3	. 5	2	0	x	2	N	v		x	1			. (C 11		- 3	1.1	. 0	1	8	1	ĸ	- 2	1	D	18	N	G	8	D	1	A	V	T
					- 3					୍									180			۰.,	-			240			26	6			60		10.	170			780
0031	102	770	* ***	10.03	ca.	111	12.2.1	12.5	ATCO	·	11/21	-	in a s	no	-	3.12	117	nin a	LASTC .	77		3/15	acc	a na	ana	2031	inn	int.	133	ice			inst	inte	220	1073	àca	ai/	204
1	7		10				1	100		4		1	P. 1010	1				100	DULLO		1			0			đ	1	N			1		v	8	v		D	7
	~	10	6		1	200			210	~ °		22	0		- 1	230			240			16	90			800			81	0		8	20		1	30			840
CTC	ún.	110	cT1	cas	cr)	223.	ALC:	isc.	TCCT	123	are	300	AA.	ioa:	tad	TAT	330	202	ACTT	cc	222	440	ATC	TAO	SAG	ADA	in the	rais	OCT	TOA!	inc:	COAS	CGM	ica:	Tec	ACA	033	TCI	ADOT
E	1	x	L	R	1	π	T		P	N	T	5	ĸ	D	1				L	2	8	1 5	8	8	8	D	F	6	L	D	ċ	D	Σ	H	\$	T	E	.8	R
		25	έ.		17	240			270	6		24	6			290			200				50			160			87	5			10		۰.	00			900
TTO	÷.	330	0.07	0.01	in	LOT!	-	123	CTC.	INT	ria i	CAC	TA/	122	tici	inca.	nan	1.11	TGAC	10	Ta	TCO	TTA	ceet	ici.	ACT	iate	ida		reat	act	TTT	toga	trad	-	100	ATT	277	CCA.
1	p	×	1	p	P	1	1		1	1	B	6	Y	5	1	1.0		1	0 0	c	c	. 8	Y	P	L	τ	v	D	T	E	A	F	Ġ		D	N	I	I	
		1.	5		12				÷	97		÷.,	<u>_</u>									10			- 2					<u> </u>		1.			÷.,	10			44
		321				29	-		330				2			359			360	-									225							50			200
NOLA		UAC:					iner.	100	D.	IN	UAU N				ran		1001	LAI .	TAUL		~				~								-					-	-
	2	1	×.	•	۰.		~			.*		۰.	2								^	2		<u> </u>	۰.	2	۰.		1					×.		4	*	۰.	2.
	12	371	2		1.3	180		93	390		1.1	40	2.			410	177	_	420				19	1	1	100	1		22			200	9	200	- 29	76	1		020
ATOC		ACO	240	202	GAI	SII.	CIA	aca	10AA	1010	CAA	GAA	***	000	:22	ATG	110	CII	CIT	TAI	(CC	ICA	TAC	-CAI	C.I.	1010	CAG	CA.	490	994		222	491	TCA	200	990	CCT	100	IOL
м	Υ.	Ξ.	ε.	5	Ρ.	1	-	*	10.0	Y.	9	ε.	×.	. P	×		c	r	. E.	×	. 6		_*		1	×.	н	18	. A	. 8	к.	. 6.	. e	2	A	2	κ.	٩,	
		13				140			450			.10	Q			979			150			-10	30			140			035	<u></u>		100	ž.,						
AAAI		AUC		240	814		CAC	-		IS I A	UIA	AAU	900			919	UAL	AIA	iciu		144	***		ARE U	****			~		~		***		-	~		inn		
× .	r	2	3	ĸ	Ξ.	8		2	ĸ	Y	Y	×.	<u>^</u>	8	1	. *	-	1	-		. *		. *	. 15	2		*	18		.*		1.	.*		ň.,	5	*	۰.	
31.2	22	190			_ 5	00		1	\$10			. 92	۹		2	\$30	1.1		540			10	10		- 22	00		1	110			112	0		22	20			
ASAC	CT	STC3	AG.	ACT.	cer	ACA	ACA	STO	111	010	CAA	ATC	CIG	2/32	CT	CAT	:20	100	CATG	TAT	00	IAA	ATT	CCA	990	ATS	GIN	DIS	GAI	090	IGI	900	IOL	ICA	roa				
8	Ρ.	Υ.	x	τ	Р.	т	т	Υ.	τ.	Y.	8	1	ь.	8	Ŀ	1	ĸ	P	M	x	.9	Ň	- 1	P		8	¥	Y	P	8	ç	9	ç	2	•				
		550	× .		- 5	40			\$70			58	0			590			400																				
AAAG	AC	1011	CA.	493	IAT	ACT	604	ATC	037.	ICI	CIG	777	CTT	940	ΤA	2771	:003	100	CACT																				
ĸ	Ð.	G	т	8	Y	T	- G	1	8	5	L	K	L	D	- M	· N		13	- T																				

Fig. 1 CDS sequence and amino-acid sequences of MSTN

Fig. 2 Analysis of wuzhumuqin sheep MSTN gene encoding protein secondary structure

Fig. 3 The signal peptide analysis of Ujumqin sheep MSTN gene

Ujumqin s	heep 100
Sheep	100 100
Goat	99.5 99.5 100
Cattle	93 3 93 3 92 8 100
Horse	94.4 94.4 93.9 94.9 100
Pig	955 955 949 957 981 100
Himan	94.1 94.1 93.6 94.1 97.3 97.9 100
Chimpanz	ee 944 944 939 944 976 981 997 100
Baboon	94.1 93.6 94.1 97.3 97.9 99.5 99.7 100
Rat	909 909 904 912 947 949 949 952 949 100
Dog	93.1 93.1 92.5 93.3 96.3 96.8 95.7 96.0 95.7 93.3 100
Turkey	88.0 88.0 87.5 88.3 91.5 91.7 92.3 92.0 91.7 89.9 89.9 100
Chicken	877 877 872 880 909 915 920 917 915 899 896 992 100
Rabbit	94.7 94.7 94.1 94.4 97.6 98.4 97.9 98.1 97.9 95.2 95.7 92.3 92.0 100
Zebrafish	66.8 66.8 66.3 66.0 68.2 68.2 68.7 68.5 68.2 67.4 67.7 68.5 68.7 68.2 100

Table 1 Using biological software DNAMAN calculate amino acid sequence similarity between the species (Wuzhumuqin sheep \rightarrow Ujumqin sheep).

IV. CONCLUSION

In this study, five cloned fragments were spliced and its full-length gene sequence were 5068bp. Biological analysis shows that Wuzhumuqin sheep MSTN gene has two introns and three exons. Size of Exon I, exon II and exon III were 373bp, 374bp, 381bp and size of intron I and intron II were 1833bp, 2030bp. High similarity of MSTN gene exist in Wuzhumuqin sheep and other sheep, reached 99.9%, mutation only occured once in position 1122 (C \rightarrow T), however it did not result in amino acid changes.

Further explanation revealed that wuzhumuqin sheep and other sheeps has closer kinship, although there was some differences nucleotide level, but there was no difference amino acid level, so it would not influence the encoded protein structure. Wuzhumuqin sheep and sheep MSTN gene encoding protein sequences has the same composition, so the regulation of gene expression in the way between the two species may also be the same. Meanwhile, results showed that DNA level between wuzhumuqin sheep and other species have difference because they may have different origins, evolution and extent of breeding. The reason need to further research.

ACKNOWLEDGEMENTS

The authors would like to thank the the National Natural Science Foundation of China (31360368) for funding this work.

REFERENCES

- 1. McPherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member [J]. Nature. 1997, 387: 83-90.
- Thomas M, Langley B, Berry C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation [J]. Journal of Biological Chemistry. 2000, 275: 40235-40243.
- McPherron A C, Lee S J. Suppression of body fat accumulation in myostatin deficient mice [J]. Journal of Clinical Investigation. 2002, 109(5): 595-601.
- McPherron A C, Lee S J. Double muscling in cattle due to mutations in the myostatin gene[J]. Proceedings of the National Academy of Sciences U S A. 1997, 94: 12457-12461.
- Li X L, Wu Z L, Liu Z Z. SNP identification and analysis in part of intron 2 of goat MSTN gene and variation within and among species [J]. Journal of Heredity. 2006, 97(3): 285-289.
- Tovah Kerr, Eric H Roalson, Buel D Rodgers. Phylogenetic analysis of the myostatin gene subfamily and the differential expression of a novel member in zebrafish [J]. Comparative Biochemistry and Physiology - Part B. 2009, 153(4): 138-139.
- Zhiliang G, Dahai Z, Ning L, et al. The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth [J]. Sci China C Life Science. 2004, 47(1):25-30.
- Kambadur R, Sharma M, Smith T P, Mutations inmyostatin (GDF8) indouble-muscled Belgian Blue and Piedmontese cattle [J]. Genome Research. 1997, 7(9): 910-916.
- Kocamis H, et al. Temporal expression of growth factor genes during myogensis of satellite cells derived from the biceps femoris and pectoralis major muscles of the porcin. [J] Cell Physiol,1997, Jan,186:146-152.

- Blsder P, Rastegar S, et al. Cleavage of the BMP-4 antagonist chotdin by zebrafish tolloid. [J]Science.1997, 278: 1937-1940.
- Schuelke M, Wagner K R, Stolz L E, et al. Myostatin mutation associated with gross muscle hypertrophy in a child [J]. New England Journal of Medicine. 2004, 350(26): 2682-2688.
- Kollias H D, McDermott C. Transforming growth factor-β and myostatin signaling in skeletal muscle [J]. J ApplPhysiol, 2008, 104: 579-587.