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Abstract – The potential of beef tenderness 

classification from VIS/NIR spectra has been 

studied. Therefore, 73 carcasses were ribbed 

between 11th and 12th ribs and one sample of 2.5 cm 

thick of the Longissimus muscle was taken. VIS/NIR 

spectra were collected in the chilling room over the 

samples and the samples were used to Warner-

Bratzler shear force (WBSF) reference analysis. 

Artificial neural networks (ANN) algorithm was 

applied to classify beef samples into tender (WBSF 

<50 N) or tough (WBSF ≥50 N) groups. Two ANN 

classification models were evaluated, one using the 

full spectra data set (200 wavelengths) and a 

reduced one, containing only the important 

wavelengths (25).  The models were evaluated using 

leave-one-out cross-validation and had a 

classification accuracy of 90% and 92%, 

respectively. These results indicates that VIS/NIR 

spectra could be used to classify beef tenderness in 

the chilling room conditions. 

 

Key Words: Meat quality, NIR. 
I. INTRODUCTION 

 

Tenderness is an important meat quality attribute 

and is directly linked to consumers eating 

satisfaction, which are the main criteria in 

repurchase act [1]. Brazil is an important player in 

the international market of beef meat and the 

development of a system that identifies tough and 

tender carcasses online can be of great importance 

to industry that could sort carcasses in tenderness 

groups and thus, increase consumer satisfaction. 

In practice, tenderness is measured by means of 

slow and destructive methods, either by sensory 

profiling or by mechanical techniques [2].  

Recently, the near infrared (NIR) spectroscopy has 

been successfully used for classification purposes 

in several species [3, 4, 5]. NIR has demonstrated 

its potential a sensitive, fast, non-destructive 

analytical technique for estimating quality 

attributes of meat [6], that  with minimal or no 

sample preparation provides information about the 

molecular bonds of organic compounds and tissue 

ultra-structure in a scanned sample [3].  

Some meat features as tenderness, are related to 

both linear factors (content of myofibrillar proteins) 

and nonlinear factors (muscle structure - 

connective tissue). In this case, not only linear but 

also non-linear methods should be used to build 

predictive and classification models [7]. However, 

it is found that most of the studies have used linear 

methods such as PLS and MLR to establish the 

models [4, 5].  

Artificial neural networks (ANN) is a powerful 

and flexible non-linear classification algorithm 

and has been applied to solve classification 

problems of NIR spectra data [8, 9].   

The objective of this study was to explore the 

potential of VIS/NIR spectra associated to ANN 

classification algorithm to classify beef samples 

into two tenderness groups. 

 

II. MATERIALS AND METHODS 

Sample collection 

Seventy-three Nellore steers (314±7.12 kg of hot 

carcass weight) were slaughtered at Experimental 

Abattoir of Sao Paulo University, in accordance to 

Humanitarian Slaughter Guidelines as required by 

Brazilian law and carcass processing followed the 

common industry practices adopted in Brazil. 

After twenty-four hours of chilling at 2°C 

carcasses were ribbed between 11th and 12th ribs 

and one sample of 2.5 cm thick of the Longissimus 

muscle (LM) was taken, from cranial to caudal 

direction for reference analysis. 

Warner Bratzler Shear Force Analysis 

Tenderness was determined using the WBSF 

method, according to AMSA recommendations 

[10]. Samples were cooked in an electric oven to a 

flipped over and cooked to a temperature of 71°C. 

Samples were cooled to room temperature and 

were wrapped in plastic film and cooled in a 
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refrigerator (2-5 °C) overnight. The WBSF was 

determined from six replicates (1.27-cm diameter) 

with fiber direction parallel to the longest 

dimension of the strip and perpendicular to the 

direction of the blade using WBSF equipment (G-

R Manufacturing Co., Manhattan, KS, USA) 

equipped with a Warner–Bratzler blade. The 

WBSF value was the average of six 

measurements.  

Spectroscopy analysis 

Spectra were collected in the chilling room 

immediately after quartering the carcasses over the 

LM, between 11th and 12th ribs surface, using a 

portable spectrophotometer composed by two 

units (model EPP2000-CXR-Srs and EPP2000-

InAs-512, Stellarnet Inc., Florida, USA) connected 

with a bifurcated optical cable resulting in a single 

reading from 400 to 1,395 nm. A white reflectance 

standard was used to create a reference for the 

measurements. Light was supplied by a 20-W 

halogen light source and a diffuse reflection. 

Spectral resolution was set to 5nm and the 

spectrometer scanned 20 times per reading in 

reflectance mode, and spectra were averaged by 

SpectraWiz software (Stellarnet Inc., Tampa, FL).  

Each sample was scanned three times at different 

locations throughout the LM sample. 

Spectra preprocessing, outliers and compression  

Spectral data was imported to The Unscramble®X 

10.3 software (CAMO Software AS, Oslo, 

Norway) and principal component analysis (PCA) 

was performed on data matrix in order to visualize 

any separation, detect grouping and samples 

outliers. Before model development, data 

preprocessing, outlier detection and data 

compression is normally need in order to create an 

effective and robust model. In this study, standard 

normal variate (SNV) spectra preprocessing was 

applied to remove slope variation and correct light 

scatter effects in beef samples [8]. The Martens’ 

uncertainty test was conducted for selection of the 

most informative wavelengths (WL) [11]. 

Samples were categorized into two groups of 

interest: tender and though according with the 

WBSF (<50 N, tender and ≥50 N, tough). An 

ANN was trained using collected spectra and the 

two groups of interest. A multi-layer perceptron 

using back-propagation and a sigmoid activation 

function was applied. The ANN was built using 

the Weka (Waikato environment of knowledge 

analysis) data mining software [12]. 

 

III. RESULTS AND DISCUSSION 

 

The WBSF of samples ranged from 21.71 to 101 

N (62.42 ± 19.07 N) and 48 samples were 

classified as tough samples (WBSF≥55 N). The 

mean spectra for tender and tough samples from 

400 to 1395nm are presented in Figure 1. Opposite 

to previously reported in the literature [4, 5], 

spectra of tender samples were more reflective 

along wavelengths when compared to tough 

samples. These differences were noticeable from 

405nm to 460nm and from 490 to 590nm, but kept 

fairly far from each other from 670 to 1,395nm.  

 

 
Figure 1: Vis/NIR spectra of intact beef Longissimus 

for two WBSF ranges: ‘Tender’ WBSF <50 N and 

‘Tough’ WBSF ≥50 N. 

In their study with lamb, Andrés et al. [13] also 

observed higher absorbance values for the most 

tender samples, but only in the visible range (400-

950 nm). According to the authors, a possible 

explanation for this event may rely on the fact that 

variations on pH could affect the ability of the 

meat to scatter the light, because this variations on 

pH can alter the oxidation process of heme 

pigments, thus the ability of the pigment absorb 

light is altered. Nevertheless, this inversion in 

absorbance values for tender and tough classes 

found in this study should be investigated on a 

deeper level before stronger assumptions. 

Figure 2 represents the score plot for PCA from 

non-preprocessed spectra and it shows that there is 

no particular grouping between tender and tough 

sample classes. The first and second principal 

components (PCs) explained 91% and 6% of the 

spectral variance, respectively.  
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The presence of outliers might have important 

adverse impact on model’s performance [9], 

however, no evident outliers were found in this 

study data set (Figure 2). 

 

 
Figure 2: PCA score plot of first and second principal 

component of VIS/NIR spectra. The ellipse 

represents the Hotelling’s T² statistics (p-value of 

5%). 

The ANN classification models were built using 

the full spectra data set (200 WL) and the reduced 

one, containing only the important WL selected in 

the Martens’ uncertainty test (25 WL - 430, 435, 

455, 480, 495, 510, 525, 530, 795, 960, 1010, 

1175, 1180, 1190, 1200, 1215, 1225, 1235, 1250, 

1275, 1285, 1310, 1325, 1365, and 1385). The 

Martens’ uncertainty test was applied as a way to 

simplify the model and make it more reliable [10]. 

Some parameters of ANN such as the number of 

neurons in the hidden layer, learning hate, 

momentum factor and initial weigh are crucial on 

the performance of final model [8]. For both 

spectra set (200 WL and 25 WL), the number of 

hidden layers set was (a+c)/2, where ‘a’ is the 

number of input features and ‘c’ is the number of 

decision classes (2 groups); and the training time 

was set to 10,000 epochs. The learning rate was 

set to 0.4 and 0.1 for the 200 WL and the 25 WL 

spectra set, respectively. The generated models 

were evaluated using leave-one-out cross-

validation. 

Table 1 presents the results of the ANN classifier 

for both spectra data sets. Using the full spectra 

collection, the ANN classifier had an accuracy of 

90% and 0.3169 of root mean square error 

(RMSE), and when selecting the most informative 

WL, the accuracy increased to 92% and RMSE 

decreased to 0.2784. The ANN algorithm benefits 

from a lower dimensional feature space, ie it 

generalizes better the given information to 

construct the classification models. This could 

explain why the slightly better result for the 

reduced model. 

These results indicate that ANN might be a 

promising way to classify beef meat into 

tenderness groups, even with a reduced number of 

WL used in classification model. It is especially 

important when developing models to use online, 

because the scanning time can be decreased 

significantly, once fewer WL are used to build the 

classification model. 

The high variation of equipment used for spectra 

acquisition and different treatments applied in 

developing classification models over the different 

studies makes difficult to establish a direct 

comparison between the results. Moreover, this 

becomes even more difficult because, to our 

knowledge, there is no published work attempting 

classify meat tenderness using ANN based on 

VIS/NIR spectra.  

However, if considered in a general way with the 

results of tenderness classifier based on VIS/NIR 

data, the results observed in this work are in 

accordance with reported by the literature [4, 5]. 

Park et al. [4] classified beef from the results of 

PLS models and the observed overall accuracy of 

the classification was 79%. Liu et al. [5] also 

classified beef steaks from VIS/NIR spectroscopy 

based on predicted/measured WBSF values and 

the observed overall accuracy of the classification 

was 83% for PLS based model and 96% for 

SIMCA/PCA (Soft Independent Modeling of 

Class Analogy of Principal Component Analysis). 

It is important to point out that all these authors 

subjected the beef samples to different ageing 

times to increase the variability of structural 

properties of the muscle fibers.  

 

IV. CONCLUSION 

 

This study indicates that VIS/NIR spectra and 

ANN classification algorithm has high potential to 

classify beef longissimus tenderness at chilling 

room conditions.  
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Table 1: Results of the VIS/NIR spectra and ANN tenderness classifier. 

# RMSE                  Predicted Accuracy1 Precision2 Recall3 F-Measure4 

    Tender Tough   

25 0.2784 

R
ef

er
en

ce
 Tender 21 4 

92% 
91% 84% 87% 

Tough 2 46 92% 96% 94% 

200  0.3169 
Tender 19 6 

90% 
95% 76% 84% 

Tough 1 47 89% 98% 93% 

# Number of wavelengths used to build the model. RMSE means root mean square error. 1Accuracy: is the 

percentage over the number of correctly classified samples. 2Precision: is the fraction of retrieved instances 

inside a class, which were correctly classified. 3Recall: fraction of instances belonging to the class that were 

retrieved inside this same class. 4F-Mearure: harmonic mean of precision and recall. 
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