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Abstract – Six independent beef datasets with CT composition data were used to demonstrate how well the industry 
standard measurements of hot carcase weight (HCW) and rib fat depth predict carcase fat content (or percentage). 
Equations predicting computed tomography (CT) fat% were derived in all six datasets then transported to the other five 
datasets. It was shown that the accuracy and precision of prediction is highly variable when transported between datasets. 
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I. INTRODUCTION 
 
Lean meat yield is an important profit driver for the beef industry [1]. The current industry standard for determining 
carcase composition is based on carcase weight and a measurement of fat depth either on the hot carcase at the P8 site 
located at the intersection of a line parallel to the spine from the tuber ischium and a line perpendicular to it from the 
spinous process of the third sacral vertebra [2], or on the cold carcase at the rib quartering site between the 5th and 
13th ribs [3]. When predicting carcase yield both the 12th rib and P8 measurements have been shown to be equally 
accurate when used in conjunction with hot carcase weight [4]. 
 
There is concern within the Australian beef industry that these measures are prone to error due to a range of factors 
including, poor precision of this method for predicting lean meat yield and poor transportation of this method across 
differing populations of cattle, as well as operator errors made during measurement. However there is little data 
available to properly quantify this error. A key limitation is the method for determining carcase composition. 
Historically this has been reflected through carcase bone out data, yet this is problematic due to varying bone out 
specifications across datasets as well as large human imposed operator effects. In Australia with the introduction of CT 
scanning methodologies, datasets are now available to assess the efficiency of predicting carcase composition using 
carcase weight and a single point measurement of fat depth. This study assesses the capacity of rib fat and carcase 
weight to predict CT carcase fat% across multiple datasets. 
 
II. MATERIALS AND METHODS 

 
This study compiled six different beef datasets where carcase measurements and CT scan data were available. All 
animals were Bos Taurus, dataset 1 being a mix of Angus and Hereford, dataset 2, mixed breeds, and datasets 3-6 
pure-bred Angus. P8 fat depths were not available across all datasets and therefore rib fat (measured as fat depth over 
the 12th rib) and hot carcase weight was used to predict CT fat% in the carcase. CT scanned data was captured using 
Picker PQ 5000 spiral CT scanners at either Murdoch University or the University of New England. In both cases the 
spiral abdomen protocol was selected with settings: pilot scan length of 512 mm, field of view set at 480mm, Index 20, 
kV 110, mA 150, revs 40, pitch 1.5 and standard algorithm. Prior to scanning the carcasses were dissected into 16 
primal sections to fit the limitations of the CT aperture. The primals were scanned in 10 mm or 5mm slice widths, with 
each slice taken 10 mm or 15mm apart. Image analysis was done according to the method described by Anderson et al 
[5].  
 
General linear models (SAS) were used to predict CT fat% from hot carcase weight and rib fat depth using leave-one-
out cross-validation (GLM Select procedure in SAS). To demonstrate transportability a number of approaches were 
tested. Firstly equations were derived in each dataset separately and then validated in each of the remaining five 
datasets (models 1-6, Table 2). Secondly, to normalize for the variation in data range and number of animals an 



equation was derived in 5 of the datasets and then validated in the 6th. This process of “leave-one-out” validation was 
repeated until validation had occurred in all 6 datasets independently (models 8-13, Table 2). Lastly an equation was 
derived in all of the datasets combined, and then tested within each of the 6 data subsets. For the relationship between 
actual versus predicted CT fat%, R-square of the prediction and root mean square error of the prediction (RMSEP) are 
shown as indicators of precision, and slope and bias estimates are shown to represent accuracy within each dataset. 
Bias represents the difference between the predicted and actual values at the median of the dataset. An example of this 
process of training and validation is shown in Figure 1.  
 
III. RESULTS AND DISCUSSION 
 
Descriptive statistics of datasets 1 to 6 are shown in Table 1. The model fitted within all datasets combined 
demonstrated an RMSE for predicting CT fat% of 3.15 and described 80.6% of the variation within the data. However 
within subsets of its own training data the performance of this model (model 7, Table 2) showed considerable variation 
in precision, with RMSE varying from 4.04 to 2.03 CT fat% units, and described between 12% and 85% of the 
variation within these populations. When models were trained within individual datasets (models 1-6 in Table 2), the 
RMSE for predicting CT fat% varied markedly from 4.05 CT fat% units, to 1.84 CT fat% units, and described 
between 13% and 88% of the variation within these populations.  
 
Table 1. Descriptive statistics including mean±STDEV (minimum, maximum) for CT fat %, rib fat depth and hot carcase weight. 

Dataset 1 2 3 4 5 6 

N 102 51 37 40 50 127 

CT Fat% 23.8 ± 8.71 (11.7, 
42.3) 

21.1 ± 8.55 (6.98, 
47.0) 

24.3 ± 2.84 (17.5, 
29.8) 

17.2 ± 2.63 (12.5, 
22.8) 

26.7 ± 4.30 (15.1, 
36.9) 

17.6 ± 4.45 (11.2, 
29.4) 

Rib Fat (mm) 9.21 ± 5.95 (1, 30) 9.20 ± 8.16 (1, 36) 9.89 ± 2.49 (6, 15) 4.90 ± 1.72 (1, 9) 13.9 ± 3.38 (7, 24) 4.47 ± 3.48 (1, 13) 
Hot Carcase 
Weight (kg) 

330.5 ± 118.5 
(152.0, 581.8) 

307.8 ± 70.1 (156.0, 
467.0) 

363.2 ± 31.1 (312.0, 
438.0) 

258.3 ± 19.9 (222.0, 
312.0) 

241.4 ± 25.7 (192.8, 
302.8) 

229.6 ± 73.4 (118.0, 
404.0) 

 

 
Transporting models across datasets showed marked variation in precision compared to the training data, which is 
evident when comparing precision estimates within columns in Table 2. Across all validation tests for Models 1-6 in 
Table 2 the RMSEP varied from 1.85 to 4.88 and bias estimates varied from -6.47 to 4.39 CT fat% units. Furthermore, 
the slope of these relationships also deviated markedly from 1, ranging from 0.28 to 3.15, implying that the bias would 
change a great deal if it were estimated at a value higher or lower than the median CT fat%. In part this marked 
variation is due to a limited range within the training data (ie datasets 3, 4, and 5), and the resultant extrapolation 
beyond this range when validated. Thus it is not surprising that the populations with smaller range and therefore 
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Figure 1. Relationship between actual CT fat % and predicted CT fat % from a model containing hot carcase weight (kg) and rib fat 
depth (mm). This represents an example of the training and validating procedure, in this case with the prediction derived in dataset 
1 and transported to datasets 2, 3, 4, 5, and 6. Dashed lines represent a perfect prediction; solid lines show the performance of the 
transported equation. 
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smaller standard deviations demonstrate better precision, but these still show marked prediction bias from their actual 
values. In practice within industry any predictive model will be exposed to the weakness of extrapolation, however 
within the current study dataset 1 is the least exposed to this limitation, given its range. Yet in spite of this the model 
trained in this dataset still demonstrated considerable variation in performance across validation datasets (see Figure 1 
and Table 2). For example the RMSEP within dataset 1 varied from 3.08 to as high as 4.88, slope ranged between 0.78 
and 3.15, and bias estimates ranged between -4.44 and 2.23 fat percentage units at the median for dataset 1.  
 
This effect of data range can be further normalized by training models using 5 datasets and then testing in the 6th, as 
shown for models 8 – 13. In this case there was still considerable variation in performance across the validation 
datasets, with RMSEP varying from 2.035 to as high as 4.049, slopes ranging between 0.81 and 1.25, and bias 
estimates ranging between -2.11 and 2.29 fat percentage units at the median for each validation dataset. 
 

Table 2. Precision and accuracy estimates for the relationship between actual CT fat % and predicted CT 
fat % from models containing hot carcase weight (kg) and rib fat depth (mm). Precision estimates include 
R-square and root mean square error of the prediction, and accuracy estimates include slope of the 
relationship and bias at the median.  

  Validation dataset 
Model No.  

(ID of 
training data) 

 
Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 

Model 1* R2 0.88 0.74 0.07 0.28 0.49 0.66 
(Data 1) RMSEP 3.083 4.426 2.783 2.26 3.115 2.6 

 
Slope 1 1.08 0.35 0.96 1.3 0.73 

 
Bias 0 -1.79 -1.33 -1.08 4.39 1.29 

 
             

Model 2* R2 0.84 0.78 0.12 0.43 0.43 0.77 
(Data 2) RMSEP 3.515 4.046 2.699 2.015 3.275 2.14 

 
Slope 1.19 1 0.45 1.11 0.98 0.97 

 
Bias 2.23 0 1.84 0.51 2.97 1.8 

 
             

Model 3* R2 0.72 0.76 0.13 0.46 0.36 0.83 
(Data 3) RMSEP 4.612 4.202 2.681 1.963 3.464 1.851 

 
Slope 3.15 2.23 1 2.5 1.85 2.95 

 
Bias -0.88 -3.6 0 -5.09 0.3 -5.67 

 
             

Model 4* R2 0.72 0.76 0.13 0.46 0.37 0.83 
(Data4) RMSEP 4.591 4.198 2.681 1.963 3.461 1.853 

 
Slope 1.26 0.89 0.4 1 0.74 1.18 

 
Bias 2.17 -0.29 2.15 0 0.28 0.5 

 
             

Model 5* R2 0.88 0.74 0.07 0.29 0.49 0.67 
(Data 5) RMSEP 3.084 4.389 2.778 2.245 3.114 2.58 

 
Slope 0.78 0.84 0.28 0.76 1 0.57 

 
Bias -4.44 -5.89 -6.47 -4.25 0 -1.01 

 
             

Model 6* R2 0.69 0.76 0.13 0.46 0.35 0.83 
(Data 6) RMSEP 4.883 4.256 2.682 1.964 3.495 1.84 

 
Slope 1.03 0.72 0.32 0.8 0.58 1 

 
Bias 0.88 -1.56 0.66 -0.71 -2.85 0 

 
 

      Model 7# R2 0.85 0.78 0.12 0.42 0.44 0.76 
(All Data) RMSEP 3.424 4.049 2.705 2.031 3.250 2.190 

 
Slope 1.09 0.94 0.42 1.03 0.94 0.88 

 
Bias 0.30 -1.83 -0.30 -1.01 1.27 0.59 

 
 

      Model 8-13^ R2 0.80 0.78 0.42 0.42 0.46 0.75 
(Leave one  RMSEP 3.947 4.049 2.035 2.035 3.201 2.255 
out) Slope 1.25 0.92 1.04 1.04 1.05 0.81 
 Bias 1.15 -2.11 -1.15 -0.88 2.29 1.26 
*Within rows estimates in the training data are listed in italics and validated across the remaining datasets.  
#Estimates represent performance within subsets of the training data.  
^Estimates of models 8-13 represent performance in the validation dataset only. 

 



These results highlight inaccuracies and loss of precision when using carcase weight and a single point measure of 
fatness to reflect carcase fat percentage. This work aligns well with previous studies where carcase weight and 
individual point measures of fatness [1] or even multiple carcase measures [6] produced highly variable results. 
 
The fact that these models still vary in their performance across groups, even after normalizing for range, is likely due 
to a number of factors. Firstly the successful prediction of carcase fat percentage from carcase weight and a single 
measure of fat depth relies upon accurate and consistent fat depth measurement. Although these are experimental 
datasets in which great care has been taken during the collection of rib fat measurements, there are still likely to be 
processing and operator effects which would show up most strongly between datasets. Under commercial conditions 
these rib fat measurements would show even greater variation, hence the prediction of carcase fatness would be even 
more variable than that already demonstrated in this study. Secondly the prediction of carcase fat composition from fat 
depth relies upon a highly robust correlation between fat depth measured in one region with fat composition elsewhere 
in the carcase. There is evidence in sheep that suggests that genetics can strongly influence this correlation, 
redistributing bone, muscle and fat tissue within the carcase [5, 7]. It is quite possible that this effect also exists in beef, 
and therefore the genetic differences present across datasets may offer an additional source of error that contributes to 
the bias and variable precision evident in this study. Based on the genotypic variation present in herds across the 
Australian beef industry, and the likely increase in measurement error under commercial conditions, we conclude that 
the variation in bias and precision demonstrated in this study could well be understating that present in commercial 
reality.  
 
IV. CONCLUSION 
 
These results demonstrate the variability in estimating carcase fat composition from carcase weight and a single point 
of measurement of fat depth. Factors influencing this prediction include restricted range of training data, measurement 
and processing error, and genetic differences between groups. This illustrates why the Australian beef industry has 
little confidence in these measurements to reflect carcase composition and highlights the need for a whole carcase 
composition measurement that is independent of breed, processing and operator error. 
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