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Abstract – Twenty eight lamb datasets with carcase weight, GR tissue depth and computed tomography (CT) composition 
data were used to demonstrate how well the industry standard measurements of hot carcase weight and GR tissue depth 
predict carcase fatness. Models predicting carcase CT Fat% were derived in each of 28 datasets then validated in the other 
27 datasets. It was shown that the accuracy and precision of prediction using hot carcase weight and GR tissue depth is 
highly variable when these models were transported between datasets highlighting the need for a more robust industry 
measurement of carcase composition. 
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I. INTRODUCTION 
 
Lean meat yield is an important profit driver for the sheep meat industry. The current industry standard for 
determining carcase composition is based on carcase weight and a measurement of fat depth by palpation of the GR 
site (located over the 12th rib 110mm from the mid line), yet this has been shown to be a highly imprecise estimate of 
lean meat yield [1]. This precision can be markedly improved by manually measuring GR tissue depth in millimeters, 
however reliance upon a single point measurement is still likely to introduce significant bias in genetically diverse 
populations [2]. Furthermore, there is concern within the Australian lamb industry that these measures are prone to 
bias due to human operator error as well as variation in abattoir processing. There is little data available to quantify 
this error, with a key limitation being the method for determining carcase composition. Historically this has been 
reflected through carcase bone out data, yet this is problematic due to varying bone out specifications across data sets, 
as well as large human imposed operator effects [3]. In Australia, with the introduction of computed tomography (CT) 
scanning methodologies, datasets are now available to assess the efficiency of predicting carcase composition using 
carcase weight and GR tissue depth [4]. This study assesses the capacity of GR tissue depth and carcase weight to 
predict carcase CT fat% across multiple datasets, testing the hypothesis that the precision and accuracy of this 
prediction would vary. 
 
II. MATERIALS AND METHODS 

 
This study made use of 28 datasets totaling 2289 lambs where CT estimates of carcase fat% (CT fat%), carcase 
weight and GR tissue depth measurements had been collected over a 9 year period. One of these data sets (dataset 28, 
Table 1) consisted of lamb carcases that were sourced over a 45 minute period immediately following slaughter from 
a commercial abattoir near Bordertown, SA. These lambs were selected randomly across a broad range of fatness 
and carcase weight, hence their parentage is unknown. The remaining 27 of these datasets were individual slaughter 
groups of lambs from Meat and Livestock Australia’s Nucleus Flock experiment, or from the Sheep Cooperative 
Research Centers Information Nucleus Flock experiment, the designs of which are detailed in Fogarty et al [5]. The 
lambs (Merino, Maternal x Merino, Terminal x Merino and Terminal x Border Leicester-Merino) were the progeny 
of 433 industry sires, representing the major sheep breeds used in the Australian industry. The siretypes included 
Terminal sires (Poll Dorset, Suffolk, Texel, White Suffolk), Maternal sires (Border Leicester, Coopworth, Dohne 
Merino), and Merino sires (Merino, Poll Merino). Each dataset represents a slaughter group which was balanced for 
sire breed. In all cases tissue depth at the GR site and hot carcase weight were measured within 1 hour of slaughter. 
CT scanned data was captured between 2 and 5 days post mortem using the scanning procedure and image analysis 
method described by Anderson et al [2].  
 



General linear models were used to predict CT fat% from hot carcase weight and GR tissue depth using leave-one-out 
cross-validation (GLM Select procedure in SAS). To demonstrate transportability equations were derived in each 
dataset separately and then further validated in each of the remaining 27 datasets. Thus 28 models were tested, each 
across 27 datasets producing a total of 756 validation tests. For the relationship between actual versus predicted CT 
fat%, R-square (R2) of the prediction and root mean square error of the prediction (RMSEP) are shown as indicators of 
precision, and slope of the relationship and bias estimates are shown to represent accuracy. Bias represents the 
difference between the predicted and actual values at the median of the dataset.  
 
III. RESULTS AND DISCUSSION 
 
Descriptive statistics for all 28 datasets are shown in Table 1. Within the training data across each of the 28 datasets 
the RMSE for predicting CT fat% varied markedly, ranging between 1.67 to 3.10 CT fat% units, describing as little as 
15% and as much as 77% of the variation within these populations. 
 
Table 1. Descriptive statistics including animal numbers (n), and mean ± standard deviation (minimum, maximum) for CT fat %, 
GR tissue depth and hot standard carcase weight. 
  n CT fat % GR tissue depth (mm) Hot Standard Carcase Weight (kg) 

Dataset 1 95 23.19 ± 3.09 (16.37 , 30.28) 10.91 ± 3.52 (4 , 22) 21.5 ± 2.5 (16.0 , 29.6) 
Dataset 2 72 22.12 ± 2.74 (17.06 , 28.88) 9.65 ± 2.50 (3 , 17) 20.9 ± 1.7 (17.4 , 24.6) 
Dataset 3 63 23.83 ± 3.18 (17.54 , 32.57) 11.02 ± 2.43 (6 , 17) 20.0 ± 1.2 (17.6 , 22.8) 
Dataset 4 97 29.33 ± 3.70 (21.09 , 37.63) 18.93 ± 4.56 (7 , 30) 27.8 ± 3.7 (19.2 , 39.6) 
Dataset 5 99 33.48 ± 3.09 (26.73 , 41.27) 24.88 ± 3.84 (14 , 30) 31.8 ± 3.3 (23.0 , 40.0) 
Dataset 6 98 23.22 ± 3.85 (13.53 , 33.15) 9.07 ± 3.89 (3 , 22) 19.7 ± 2.8 (15.4 , 28.8) 
Dataset 7 96 31.03 ± 3.61 (22.96 , 38.30) 20.17 ± 5.02 (9 , 30) 27.7 ± 3.4 (18.8 , 34.8) 
Dataset 8 95 27.96 ± 3.91 (19.03 , 37.17) 17.32 ± 5.58 (4 , 30) 23.6 ± 4.8 (13.5 , 35.0) 
Dataset 9 93 22.85 ± 3.23 (15.65 , 31.77) 9.38 ± 3.58 (2 , 17) 20.0 ± 3.3 (13.5 , 29.0) 

Dataset 10 98 27.32 ± 3.52 (20.16 , 34.56) 15.30 ± 5.14 (6 , 28) 23.5 ± 4.6 (13.0 , 34.2) 
Dataset 11 93 29.53 ± 4.53 (18.41 , 39.53) 19.76 ± 7.72 (5 , 44) 26.2 ± 6.1 (13.2 , 39.3) 
Dataset 12 99 25.99 ± 4.00 (18.62 , 36.55) 14.33 ± 5.49 (5 , 30) 21.3 ± 4.9 (12.3 , 33.5) 
Dataset 13 99 27.68 ± 4.21 (17.11 , 36.47) 15.71 ± 6.03 (2 , 36) 22.1 ± 5.4 (10.9 , 37.1) 
Dataset 14 59 28.76 ± 3.49 (18.15 , 35.21) 17.64 ± 5.46 (5 , 27) 24.2 ± 3.5 (15.6 , 29.6) 
Dataset 15 57 28.55 ± 3.11 (22.96 , 38.05) 18.67 ± 3.58 (11 , 28) 26.9 ± 2.1 (22.6 , 31.6) 
Dataset 16 56 26.49 ± 3.46 (17.26 , 33.36) 16.48 ± 3.60 (7 , 24) 25.7 ± 2.4 (19.8 , 30.6) 
Dataset 17 94 29.14 ± 4.09 (20.57 , 39.69) 15.52 ± 5.36 (2 , 25) 24.1 ± 4.3 (15.3 , 33.5) 
Dataset 18 68 29.50 ± 3.31 (21.83 , 38.85) 16.10 ± 4.13 (7 , 25) 26.2 ± 3.5 (19.3 , 33.6) 
Dataset 19 93 25.14 ± 3.54 (18.81 , 33.89) 11.05 ± 3.63 (3 , 21) 22.2 ± 2.8 (16.1 , 29.6) 
Dataset 20 58 26.14 ± 3.74 (17.44 , 33.42) 11.70 ± 3.73 (5 , 25) 23.2 ± 2.2 (18.7 , 29.7) 
Dataset 21 60 23.94 ± 2.60 (17.44 , 30.19) 10.90 ± 3.34 (4 , 19) 21.4 ± 2.5 (16.0 , 27.9) 
Dataset 22 52 29.68 ± 3.19 (22.39 , 37.74) 22.44 ± 3.16 (13 , 29) 28.6 ± 2.6 (23.3 , 36.0) 
Dataset 23 78 25.79 ± 4.03 (16.60 , 37.51) 13.68 ± 4.45 (3 , 24) 22.3 ± 2.9 (14.3 , 27.4) 
Dataset 24 95 23.99 ± 3.31 (16.09 , 32.57) 9.99 ± 4.40 (3 , 25) 20.9 ± 2.7 (13.5 , 27.4) 
Dataset 25 88 25.26 ± 2.88 (18.87 , 31.37) 15.64 ± 3.77 (9 , 25) 24.6 ± 1.7 (20.8 , 29.0) 
Dataset 26 99 23.86 ± 2.98 (17.70 , 30.16) 10.15 ± 3.68 (3 , 21) 21.0 ± 2.0 (16.2 , 25.8) 
Dataset 27 87 20.55 ± 2.55 (15.42 , 28.17) 7.90 ± 2.90 (3 , 16) 19.8 ± 2.2 (16.5 , 26.6) 
Dataset 28 48 21.74 ± 3.99 (12.70 , 33.81) 14.63 ± 5.40 (5 , 27) 24.7 ± 4.4 (17.4 , 32.2) 

 
When the 28 trained models were validated across each of the other datasets the precision and accuracy indicators 
showed marked variation. Across the 756 validation tests the RMSEP values averaged 2.36, yet ranged between 1.67 
to 3.33 CT fat% units, with a standard deviation of the RMSEP values of 0.30 CT fat% units (Table 2). Similarly the 
R2 values averaged 0.52, yet ranged between 0.12 and 0.77, with a standard deviation of the R2 values of 0.15. This 
highlights substantial variation in precision. The accuracy indicators also varied, with bias values ranging between 
6.83 to -6.95 and a standard deviation of 2.08 CT fat% units (Table 2). Furthermore, the slope of these relationships 
also deviated markedly from 1, ranging between 0.51 to 2.00, with a standard deviation in slope values of 0.25 (Table 
2), implying that the bias would change markedly if it were estimated at a value higher or lower than the median CT 
fat%.  
  



Table 2. Precision and accuracy estimates for the relationship between actual CT fat % and predicted CT fat % from models 
containing hot carcase weight (kg) and GR tissue depth (mm). Precision estimates include R-square and root mean square error of 
the prediction, and accuracy estimates include slope of the relationship and bias at the median. Values are shown for the mean, 
standard deviation, minimum and maximum from testing 28 models across 27 datasets, a total of 756 validation tests. 
 Mean Standard Deviation Minimum Maximum 
R2 0.52 0.15 0.12 0.77 
RMSEP 2.36 0.30 1.67 3.33 
Slope 1.00 0.25 0.51 2.00 
Bias 1.60* 2.08 -6.95 6.83 
*The average of the absolute values of bias is reported.  
 

 
Figure 1 provides an example of the process of training the model, in this case in dataset 11 with an RMSE of 2.51 and 
R2 of 0.70, and then validating it across the remaining datasets. In this example validation tests are shown for only 7 of 
the remaining 27 datasets as examples. 
 
In support of our hypothesis, these results highlight the substantial variation in prediction precision and accuracy when 
using carcase weight and a single point measure of tissue depth to reflect carcase fatness. This work aligns well with 
previous studies where carcase weight and GR tissue depth demonstrated poor precision [1] and limited ability to 
differentiate between genetically diverse lines of sheep [6]. In part this variability in precision and accuracy would be 
driven by differences in data range between the datasets, potentially causing some extrapolation beyond the range of 
the training data. However the datasets used (see Table 1) all had broad variation with data ranges that substantially 
overlapped, hence in most cases there was relatively little extrapolation. As such, the variability in prediction is likely 
due to a number of other factors. Firstly use of a single measure of tissue depth to reflect carcase fatness relies upon 
accurate and consistent measurement. Although these are experimental datasets in which great care has been taken 
during the collection of GR tissue depth, there are still likely to be processing and operator effects which would show 
up most strongly between datasets. Furthermore, under commercial conditions within those abattoirs that measure GR 
tissue depth there is likely to be even greater variability due to operator error when working at speed. Alternatively, it 
should be noted that most Australian abattoirs don’t measure GR tissue depth directly, instead using palpation of the 
carcase to estimate this measure. Hence under commercial conditions the prediction of carcase fatness would be even 
more variable than that demonstrated in this study. Secondly the prediction of carcase fat composition relies upon a 
strong correlation between GR tissue depth at its site of measurement with fat composition elsewhere in the carcase. 
However, there is evidence that suggests that genetics can strongly influence this correlation, redistributing bone, 
muscle and fat within the carcase [2, 4]. Therefore the genetic differences present across datasets may offer an 
additional source of error contributing to the bias and variable precision. In the present study this effect may be limited 
as the datasets used are derived from nucleus flock slaughters, with strong genetic linkage between these groups 
through common sires or common dams. The only exception to this was for dataset 28 which consisted entirely of 
randomly sourced animals of unknown parentage, thus it is not surprising that this group demonstrated substantial bias 
(example shown in Figure 1). Therefore, based on the genetic variation present in Australian sheep flocks, and the 
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 Figure 1. Relationship between actual CT fat % and predicted CT fat % from a model containing hot carcase weight (kg) 

and GR tissue depth (mm). A small number of datasets are selected to demonstrate how the model was trained (in this case 
in dataset 11) and then validated in the other data sets. Dashed lines represent a perfect prediction; solid lines show the 
average prediction in the validation dataset.  
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likely increase in measurement error under commercial conditions, we conclude that the variation in bias and precision 
demonstrated in this study could well be understating that present in commercial reality. 
 
IV. CONCLUSION 
 
These results demonstrate the variability in estimating carcase fat composition from carcase weight and GR tissue 
depth. Factors influencing this prediction include restricted range of training data, measurement and processing error, 
and genetic differences between groups. This illustrates why the Australian sheep industry has little confidence in 
these measurements to reflect carcase composition and highlights the need for a whole carcase composition 
measurement that is independent of breed, processing and operator error. 
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