CHARACTERIZATION AND AUTHENTICATION OF TAIHE BLACK-BONED SILKY FOWL MUSCLES USING LC/MS-BASED LIPIDOMICS

Si Mi¹, Ke Shang¹, Wei Jia¹, Chun-Hui Zhang¹*, Xia Li¹, Yu-Qing Fan² and Hang Wang¹

¹Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China 100193; ²Office of Taihe Black-Boned Silky Fowl Industry, Jiangxi Province, China 343700.

*Corresponding author email: zhangchunhui@caas.cn

I. INTRODUCTION

Taihe black-boned silky fowl (*Gallus gallus domesticus Brisson*) has been highly valued as a curative food with many desirable nutritional and functional properties, such as anti-aging [1], immune-enhancing [2], anti-fatigue and anti-hypoxic effects [3]. In spite of the long history and well-accepted curative properties, there is no clear-cut answer yet for the health-beneficial components in Taihe black-boned silky fowl. Moreover, Taihe black-boned silky fowl is sold at a higher price due to its well-known health benefits. However, these benefits are accompanied by a slower growth rate and lower body weight. Driven by higher financial profits, the Taihe black-boned silky fowl has been exposed to a wide range of fraudulent practices in the marketplace.

The objectives of the present work were to establish the lipid profiles of Taihe black-boned silky fowls according to different ages, genders and parts, as well to identify the potential lipid markers for the authentication of Taihe black-boned silky fowl.

II. MATERIALS AND METHODS

Lipid extraction was performed according to the published methods [4, 5]. A UPLC/MS/MS analysis was performed using an ACQUITY UPLC 1-Class system (Waters, Manchester, UK) with a Xevo G2-S Q-TOF mass spectrometer (Waters, Manchester, UK). The identification and analysis of lipid compounds were achieved by using the Progenesis® QI software (version 3.0.1.) and searched against LIPID MAPS Lipid Structure Database (LMSD) (<u>http://www.lipidmaps.org/</u>). All statistical analyses were performed using R software version 2.9.1.

III. RESULTS AND DISCUSSION

A total of 1127 lipids were detected in Taihe black-boned silky fowl muscles. Among them, 88, 11 and 1 lipid species were found to have both a variable influence on a projection (VIP) value greater than 1 and a *p*-value smaller than 0.05 between different age, gender and part groups. The OPLS-DA score plots of different groups of muscles were shown in Figure 1. These results illustrate that the influence of the 3 investigated factors on the lipid profiles of Taihe black-boned silky fowl decreased in the order of age>gender>part. Lipid profile differences will facilitate a better understanding of the curative properties of Taihe black-boned silky fowl.

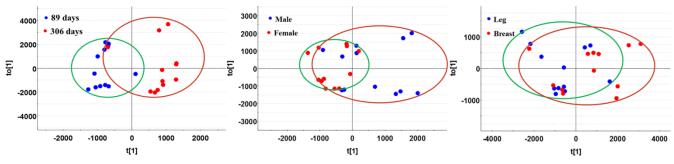


Figure 1. The OPLS-DA score plots based on the lipidomic data in the Taihe black-boned silky fowl in the groups of 89-day and 306-day ($R^2Y=0.78$ and $Q^2=0.75$), male and female ($R^2Y=0.40$ and $Q^2=0.06$), as well as leg and breast ($R^2Y=0.21$ and $Q^2=0.30$).

Taihe and crossbred black-boned silky fowls were compared in terms of their lipid compositions based on the same strategy. A comparison of the percentage data between the Taihe and crossbred black-boned silky fowls is

illustrated in Figure 2. The OPLS-DA results showed that the two groups were able to discriminate from each other effectively (Figure 3). Forty-seven lipid compounds were determined to be potential markers for the authentication of Taihe black-boned silky fowl.

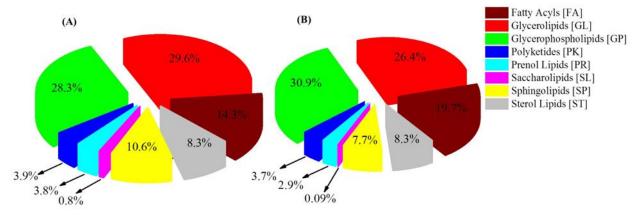


Figure 2. Lipid class composition in Crossbred (A) and Taihe (B) black-boned silky fowls.

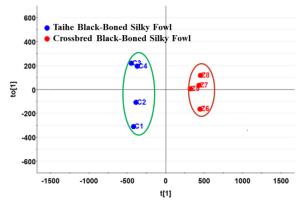


Figure 3. The OPLS-DA score plot based on the lipidomic data in the muscles of Taihe and crossbred black-boned silky fowls.

IV. CONCLUSION

The statistically significant differences in bioactive lipid levels between different ages, genders and muscles types facilitate a better understanding of their curative properties. A total of 47 potential lipid markers with VIP \geq 1 and $p\leq$ 0.05 were found for the authentication of Taihe black-boned silky fowl. Our work demonstrates that lipidomic analysis is a workable approach to be applied to food raw materials with different purposes. It is beneficial for food labeling regulations and standards system establishment.

ACKNOWLEDGEMENTS

This work was financially supported by the Project Grant of National Key Research and Development Plan (2016YFD0400201).

REFERENCES

- 1. Geng, S. S., Li, H. Z., Wu, X. K., Dang, J. M., Tong, H., Zhao, C. Y., Liu, Y., & Cai, Y. Z. (2010). Effect of wujijing oral liquid on menstrual disturbance of women. Journal of Ethnopharmacology 128(3): 649-653.
- 2. Tu, Y. G., Sun, Y. Z., Tian, Y. G., Xie, M. Y., & Chen, J. (2009). Physicochemical characterization and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (*Gallus gallus domesticus Brisson*). Food Chemistry 114(4): 1345-1350.
- 3. Tian, Y., Zhu, S., Xie, M., Wang, W., Wu, H., & Gong, D. (2011). Composition of fatty acids in the muscle of black-bone silky chicken (*gallus gellus demesticus brissen*) and its bioactivity in mice. Food Chemistry 126(2): 479-483.
- 4. Sarafian, M. H., Gaudin, M., Lewis, M. R., Martin, F. P., Holmes, E., Nicholson, J. K., & Dumas, M-E. (2014). Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Analytical Chemistry 86(12): 5766-5774.
- Trivedi, D. K., Hollywood, K. A., Rattray, N. J., Ward, H., Trivedi, D. K., Greenwood, J., Ellis D. I., & Goodacre, R. (2016). Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst 141(7): 2155-2164.