EVALUATION OF OLEORESIN PAPRIKA SOLUTION ON PRODUCT QUALITY OF EMULSIFIED-SAUSAGES DURING REFRIGERATED STORAGE

Geon H. Kim^{*}, Ha E. Kim, Sang. Yoon and Koo B. Chin

Department of Animal Science, Chonnam National University, Gwangju, 61186, South Korea *Corresponding author email: kbchin@chonnam.ac.kr

I. INTRODUCTION

Sodium nitrite (NaNO₂) is a very important ingredient of cured meat products, because it inhibited the growth of microorganisms and developed color of meat products [1]. But, it can react with second amines to produce N-nitrosamine which was related to the cause of cancers. Oleoresin paprika (OP) has been extensively used in the food industry as coloring agent for various foods [2]. OP is a lipophilic matrix obtained by processing paprika (*Capsicum annuum var. angulosum*) fruits and is mainly composed of glycerides, liposoluble polyphenolic antioxidants and carotenoid pigments. It contains a high amount of carotenoids, which represent the pigment of paprika [3]. Thus, the objective of this study was to evaluate the quality characteristics, especially such as color, of emulsified-sausage (ES) containing OP to replace partially with NaNO₂.

II. MATERIALS AND METHODS

The pork hams and backfat were purchased from local meat market. They were stored at 4°C before manufacturing ES. Trimmed meat was mixed with additives by hood mixer. And then, meat batter cooked at 75°C in a water bath after stuffing on the conical tube. Cooked samples were stored at 4°C after rapidly chilling in an ice. emulsified-sausages were prepared with different combinations of NaNO₂ and OP solution (5% OP+95% sunflower seed oil). And, then the sausages were prepared with 4 treatments (REF-150 ppm NaNO₂; TRT1-0.1 % OP solution + No NaNO₂; TRT2-0.1 % OP solution+37.5 ppm NaNO₂; 0.1% OP solution+ TRT3-75 ppm NaNO₂). Color values (CIE, L*, a*, b*), pH, expressible moisture (EM, %), Thiobarbituric acid reactive substances (TBARS, lipid oxidation determination), residual nitrite and microbiological counts (TPC, VRB) were measured to evaluate ES during the storage at refrigerator ($10^{\circ}C+2^{\circ}C$) for 35 days. The whole experiment replicated two times and two-way ANOVA was performed using SPSS 21.0 software as a factor of treatment and storage time.

III. RESULTS AND DISCUSSION

Table 1 shows the pH, CIE L*, a*, b*, EM and microbiological counts of ES with OP solution. Although TRT2 and TRT3 had lower concentration of NaNO₂ than REF, redness(a*) and yellowness (b*) values of those were higher than REF (p<0.05). Although TRT1 had higher EM values than others (p<0.05), those of TRT2 and TRT3 were lower than REF (p<0.05). No differences among REF, TRT2 and TRT3 in microbiological analysis were observed (p>0.05), even though *Enterobacteriaceae* counts (CFU/g) of TRT1 were higher than those of other treatments during storage (p<0.05).

Table 1 pH, CIE values, expressible moisture and microbiological counts of pork emulsified-sausage with oleoresin paprika solution

	Parameters						
Treatments	pН	CIE L*	CIE a*	CIE b*	EM ¹⁾	TPC ²⁾	VRB ³⁾
REF	6.09±0.07 ^a	73.1±0.36 ^b	11.0±0.35 ^c	6.24±0.89 ^d	18.8±0.77 ^b	2.01±2.12 ^b	<2 ^b
TRT1	6.08±0.09 ^a	74.3±0.98 ^a	6.42±0.38 ^d	9.81±0.55 ^a	19.0±1.13 ^a	2.54±2.31ª	2.04±2.15 ^a
TRT2	6.12±0.07 ^a	73.0±0.27 ^{bc}	12.2±0.21 ^b	7.59±0.23 ^c	18.5±0.96°	2.28±2.11 ^{ab}	<2 ^b
TRT2	6.12±0.07 ^a	72.7±0.36 ^c	12.7±0.26 ^a	7.97±0.31 ^b	18.5±0.88 ^c	2.21±2.07 ^{ab}	<2 ^b

Day							
0	6.08±0.08 ^a	73.8±1.04 ^a	10.5±2.18 ^a	7.74±1.56 ^a	17.7±0.18 ^f	<2 ^d	<2 ^d
3	6.11±0.09 ^a	73.9±1.36 ^a	10.2±2.42 ^a	7.80±1.48 ^a	18.0±0.39 ^e	<2 ^d	<2 ^d
7	6.10±0.08 ^a	73.9±1.36 ^a	10.3±2.57 ^a	7.79±1.55 ^a	18.0±0.33 ^e	<2 ^d	<2 ^d
14	6.05±0.12 ^a	74.1±1.06 ^a	10.4±2.39 ^a	7.87±1.40 ^a	18.5±0.37 ^d	2.30±1.40 ^c	<2 ^d
21	6.03±0.06 ^a	73.8±1.28 ^a	10.3±2.34 ^a	7.72±1.25 ^a	19.2±0.42 ^c	3.90±0.24 ^b	3.31±0.32 ^c
28	6.06±0.06 ^a	73.9±1.12 ^a	10.3±2.32 ^a	7.95±1.10 ^a	15.5±0.38 ^b	4.31±0.27 ^{ab}	3.78±0.37 ^b
35	6.05±0.06 ^a	74.1±1.41 ^a	10.3 ± 2.44 ^a	7.69±1.21 ^a	20.1±0.39 ^a	4.61±0.32 ^a	4.17±0.48 ^a

¹⁾ Expressible moisture

²⁾ Total plate counts

³⁾ Enterobacteriaceae counts

a,b,c,d Means with different superscript in the same row significantly differ with p<0.05

TBARS values of REF, TRT2 and TRT3 were not different until the 14 days of storage (p>0.05), however, those of REF were lower than those of TRT2 and TRT3 (p<0.05). TRT1 was the highest TBARS values among the treatments over the refrigerated storage (p<0.05)

Table 2 The TBARS (mg MDA/kg) of	of pork emulsified-sausage	with oleoresin paprika solution
	of point official buddugo	

_	Storage time (days)						
Treatments	0	3	7	14	21	28	35
REF	0.09±0.00 ^{Ca}	0.18±0.07 ^{Ba}	0.20±0.05 ^{Ba}	0.24±0.01 ^{Ba}	0.26±0.01 ^{Ca}	0.29±0.00 ^{Da}	0.28±0.00 ^{Ca}
TRT1	0.18±0.00 ^{Ac}	0.43±0.02 Ab	0.59±0.23 ^{Ab}	0.78±0.06 ^{Aab}	0.83±0.02 ^{Aa}	0.85±0.00 ^{Aa}	0.85±0.00 ^{Aa}
TRT2	0.11±0.00 ^{Bc}	0.22±0.10 ^{ABbc}	0.24±0.11 ^{ABabc}	0.22±0.01 ^{Bab}	0.36±0.03 ^{Bab}	0.38±0.00 ^{Ba}	0.37±0.00 ^{Ba}
TRT2	0.09±0.01 ^{Cc}	0.15±0.07 ^{Bbc}	0.20±0.02 ^{Babc}	0.24 ± 0.03^{Bab}	0.31±0.06 ^{BCab}	0.36 ± 0.00^{Ca}	0.37 ± 0.00^{Ba}

^{A,B,C,D} Means with different superscript uppercase letters in the same column significantly differ with p<0.05 ^{a,b,c,d} Means with different superscript lowercase letter in the same row significantly differ with p<0.05

Residual nitrite levels were in the decreasing order of REF, TRT3, TRT2 and TRT1 (*p*<0.05), which were proportional to the amount of added level of nitrite.

Table 3 Residual nitrite (ppm)) of pork emulsified-sausage	with oleoresin paprika solution
rubie e rubidudi minite (ppm)	, el perit errialemed eddedge	

Treatments	Storage time (days)						
	0	3	7	14	21	28	35
REF	20.8±0.99 ^{Aa}	17.7±0.00 ^{Ab}	15.0±0.35 ^{Ac}	9.54±0.15 ^{Ad}	8.66±0.08 ^{Ad}	6.80±0.09 ^{Ae}	4.87±0.12 ^{Af}
TRT1	0.00 ±0.00 ^{Da}	0.00±0.00 ^{Da}	0.00±0.00 ^{Da}	0.00±0.00 ^{Da}	0.00±0.00 ^{Da}	0.00±0.00 ^{Da}	0.00±0.00 ^{Da}
TRT2	6.83±0.28 ^{Ca}	5.38±1.77 ^{Cab}	3.98±0.21 ^{Cbc}	2.95±0.91 ^{Ccd}	1.57±0.37 ^{Cde}	0.76±0.25 ^{Ce}	0.57±0.01 ^{Ce}
TRT2	9.41±0.11 ^{Ba}	8.92±0.00 ^{Ba}	7.19±0.09 ^{Bb}	4.81±0.08 ^{Bc}	4.18±0.19 ^{Bc}	2.84±0.40 ^{Bd}	1.98±0.12 ^{Be}

^{A,B,C,D} Means with different superscript uppercase letters in the same column significantly differ with p<0.05 ^{a,b,c,d} Means with different superscript lowercase letter in the same row significantly differ with p<0.05

IV. CONCLUSION

In conclusion, 0.1 % OP solution in combined with 37.5 ppm NaNO₂ would be similar quality characteristics to those of REF(150 ppm), and therefore, approximately 3/4 of initial nitrite level could be replaced with 0.1% OP solution. These results could be applicable for the meat industry to reduce the nitrite.

ACKNOWLEDGEMENTS

This study was financially supported by Rural Development Administration (RDA Project # PJ01380902).

REFERENCES

1. Honikel, K. O. (2007). The use and control of nitrate and nitrite for the processing of meat products. Meat Science 78: 68-76

- Yusop, S. M., O'Sullivan, M. G., Preuß, M., Weber, H., Kerry, J. F., & Kerry, J. P. (2012). Assessment of nanoparticle paprika oleoresin on marinating performance and sensory acceptance of poultry meat. LWT-Food Science and Technology 46: 349-355.
- 3. Mínguez-Mosquera, M. I., and Pérez-Gálvez, A. (1998). Color quality in paprika oleoresins. Journal of Agricultural and Food Chemistry 46: 5124-5127.