New ingredients for meat products and meat analogues

Christian Zacherl

Potsdam, 06. August 2019

Content

- Challenges on world nutrition and trends in future ingredients
- Use of plant based protein ingredients as fat replacer in meat products
- Strategies and innovative ingredients for sodium and nitrite reduction in sausages
- Development of plant based meat alternatives such as meat analogues or vegan burger products mimicking structure, mouthfeel and taste of classic meat products, targeted to flexitarian consumers
- Plant based ingredients providing antimicrobial and / or antioxidant properties in meat products

Background: Top 10. energy containing products in worldwide harvests (FAO 2013)

Product ^{**)}	Amount t/a	Energy kcal/a	kcal per human and day ^{*)}	* ⁾ based on 7.2 bn humans
1. Maize	1,016,736,092	3.3*10 ¹⁵	1276	
2. Rice	745,709,788	2.6*10 ¹⁵	993	
3. Wheat	713,182,914	2.5*10 ¹⁵	950	
4. Soybeans	276,406,003	1.2*10 ¹⁵	469	
5. Palm oil	55,800,940	5.0*10 ¹⁴	191	4,531
6. Barley	144,755,038	4.7*10 ¹⁴	179	$\frac{\kappa cal}{human day}$
7. Sugar cane	1,877,105,112	4.7*10 ¹⁴	179	146
8. Rapeseed	64,563,586	3.6*10 ¹⁴	138	g Protein
9. Potatoes	368,096,362	2.8*10 ¹⁴	108	human day
10. Sorghum	61,384,559	2.1*10 ¹⁴	82	

Source: **) FAO-STAT, Data from 2013 and 2012

TOTAL (141 Products): 1.47*10¹⁶ kcal/a: ~ 5,460 kcal/human and day

Total use of these products for human nutrition (2,250 kcal/d)

harvests 2013: enough food to feed 17 billion (vegan) people!

© Fraunhofer

But: shortage in resources

- Food- and agricultural waste
 - >100 Mio. Tons in the EU^{**}
 - 33% worldwide along the food chain**)

Production of animals (Ressource-Factor~1:5)

- Meat*): 308 Mio. t/a
 Milk*): 753 Mio. t/a
- Eggs^{*)}: 81 Mio. t/a
- Fish from Aquaculture^{*)}: 67 Mio. t/a

Use of agricultural goods for energy production

Sources:

*) FAO-STAT, Data from 2012
 **) European Commission, 2014

Sustainability

Development of Tailor-made Food Ingredients

Plant-based raw materials

- Oil and protein crops
- By-products of fruit and vegetable processing

High-quality ingredients for

- Food
- Feed
- Cosmetics and technical use

Proteins, dietary fibres, secondary plant metabolites

Oilseeds, proteinseeds, grains: Lupin, sunflower, soy, rapeseed, linseed, rice

Alternative protein sources – what about future?

- In-vitro-meat
- Insects
- Micro + Macro algae (seaweed)
- Fungi
- Plant proteins grain legumes, oil seeds, cereals

New ingredients for meat products and meat analogues

Fat replacer

Fat in foods

- Nutritional needs
 - Energy source
 - Supply of essential fatty acids, fat soluble vitamins and aroma compounds
 - Some fat is essential
- Physical functions:
 - Melting behaviour
 - Stabilisation, e. g. of protein in sausages
 - Heat transfer, e. g. Deep-frying
- Sensory properties:

ICoMST

- Appearance, Colour
- Aroma, Flavour

© Fraunhofer

- Taste
- Texture, Mouthfeel

SEM image of whipped cream (40 $\mu m)$ ©Fraunhofer IVV

SEM image of sausage meat. ©Behr's – meat technology

Innovative fat replacer based on lupin protein

SEM image of the protein isolate from lupins © Fraunhofer IVV

Lupin protein isolate © Fraunhofer IVV

Application example: truffle fillings & mousse au chocolat

Descriptive analysis of the full-fat and low-fat product variant

Truffle filling

Application example: pate sausage

Micro-fine protein spheres generate creamy consistency

Fat-like mouth-feel

Wide range of applications

Neutral taste

Depending on application, a fat reduction between 30-90% is possible

New ingredients for meat products and meat analogues

Salt reduction

Salt vs. Consumer Health

Background:

- Average salt intake in the EU: 8-12 g / day
- Recommended dietary: 5 g salt /day
- Possible consequences of excessive salt intake
 - increased blood pressure,
 - risk of heart attack
 - cardiovascular disease
 - others

Salt Reduction

Salt-reduction – Strategies

Actual strategies for salt-reduction in sausages

Source: Hannah Baker, Food Ingredients Conference 2011

Salt Reduction - innovative Approach

1. Inhomogenious Salt distribution:

Optimization of the salt release during chewing Principle: Osmotic pressure + Sensory contrast

Layered batters in toast bread

Quelle: Martijn Noort Food Ingredients Europe Conference 2011, Meiseman & Halpern 1973

First Results – salt migration

content with ICP-MS in 3 layers over several hours

Result: Equalizing sodium content between the 2 layers

© Fraunhofer

Different salt contents in sausage meat will be a challenge

Salt reduction – New Approach

2. Multisensory Interaction

Two modalities are better than just one

- higher sensitivity
- higher detection rate
- faster response

Multisensory interactions in sausages:

- Incorporation of natural flavors and spices that have the potential to enhance a salty taste
- Development and identification of multisensory interactions or other sensory stimuli such as texture and color.

Salt reduction – promising ingredients

Salicornia europaea L. (glasswort)

- halophytic plant
- contains compounds showing antimicrobial and antioxidant properties
- contains various minerals
- very salty taste

Characteristic aroma compounds in Salicornia europaea L. (glasswort) and their influence on the perception of saltiness in sodium-reduced sausages Mareike Siebert, Andrea Strube, Dominic Wimmer, Oliver Frank, Andrea Büttner, Jessica Freiherr; eingereicht 10.2017, Meatscience

Salt reduction – promising ingredients

- Similiar key aroma compounds in S. europaea and meat flavour
- can be used as a salt-enhancing tastant for sausages.
- A reduction of sausage salt content from 2% to 1.2% can be compensated by an addition of 0.75% of glasswort and those sausage products do not lead to different sensory perceptions

New ingredients for meat products and meat analogues

Meat alternatives

Meat substitute prototypes

Background:

- Traditional plant protein alternatives e.g.
 Tofu lack in meat-like appearance
- Uniform texture unlike meat or seafood texture

Goals:

CoMS

- Investigate potential of the different protein ingredients (soy, wheat, pea) for their application in protein-rich meat substitutes
- Develop process for texturization of protein into intermediate textured proteins and post processing to model food products with high consumer acceptance

Benchmark products

Meat substitutes

- Dried/hydrated TVP
- Formed products e.g. burger patties, schnitzel, nuggets
- "Raw" minced meat or formed burger patties

BEYOND BEEF

Hamburge

tivall

 Non-formed products e.g. strips, steaks, chunks

Which protein texturization technology?

Mechanism for protein texturization

Chicken meat

Textured pea protein isolate

Source: Fraunhofer IVV

Protein texturization via extrusion cooking Two processing technologies

Thermoplastic low moisture extrusion

- $T_m \sim 150^{\circ}$ C, moisture content 20-40% w.b.
- Texturization to porous foam-like network

High moisture extrusion

ICoMST

• $T_m \sim 150^{\circ}$ C, moisture content >60% w.b.

© Fraunhofer

Texturization in long cooling to fibrous network

- Foam-like or fibrous network
- For formed products e.g. burgers, nuggets
- Texturates used as protein ingredient to provide bite and juiciness

- Compact gelled fibrous network
- For muscle-like products e.g. steak
- Elastic texture, low juicyness not recommended for juicy burger-like products

Process steps for development of prototypes

- Texturization of plant protein to intermediate texturates with foamy- or fiberous structure after drying
- Comminution, rehydration, flavorization
- Forming into burger patties, nuggets

Food extrusion know-how at Fraunhofer IVV: Meat substitute prototype products

© Fraunhofer

Source: Fraunhofer IVV

New ingredients for meat products and meat analogues

Plant based ingredients providing antimicrobial and / or antioxidant properties in meat products

Food borne zoonosis: outbreaks EU 2015

- Salmonella
- Bacterial toxins (other than C. botulinum)
- C. botulinum toxins
- Calicivirus including Norwalk-like virus
- Campylobacter
- Hepatitis A
- Listeria
- Other bacterial agents
- Other causative agents
- Other Viruses / Virus Unspecified
- Shigatoxin-producing E.coli (STEC)
- Trichinella
- Unknown
- Yersinia

EFSA, EU summary report on zoonoses, zoonotic agents and food-borne outbreaks 2016

- → Leading causative pathogens: Salmonella, Campylobacter
- ightarrow Food safety remains a sensitive topic

Consumer preferences and demands concerning food:

 \rightarrow how to address food safety issues in regard of consumer preference?

Natural antimicrobials?

plants

→ Natural food preservatives originate from:

- microorganisms → Natamycin, Nisin
 - animals → Lysozyme
 - ightarrow Sorbic acid, Benzoic acid

→ traditional food preservatives also have natural origins !!

- \rightarrow Consumer comprehension cannot be assumed in general
- → Easy, comprehensible labeling:

© Fraunhofer

Antimicrobial packaging for minimally processed foods

- → Antimicrobial packaging:
 - \rightarrow Packaging material carries preservative agent (immobilized or migrating)
 - ightarrow Agent is introduced to the product's surface
- \rightarrow Advantage: Targets surface only \rightarrow Solution: volatile agents Minimizes preservative intake \rightarrow Disadvantages/Problems Physical contact Uneven surfaces Surface/volume ratio Packaging geometry Headspace

Natural antimicrobials from plants with high volatility

Phytoanticipines:

- → constituive secondary plant metabolites
- antimicrobial activity, antioxidative activity
- Junspecific "immune system" of the plant

Volatile Fraction:

- \rightarrow essential oils
- → natural extracts free from solvents + stabilizers
- → isolated by steam-distillation
- \rightarrow 3000 plant species known to produces essential oils
- \rightarrow 300 essential oil varieties of industrial interest

 \rightarrow Many compounds are potent aroma compounds $\frac{1}{2}$

https://www.webmd.com/skin-problems-andtreatments/ss/slideshow-essential-oils

Functional plant extracts

Antimicrobial hop extracts – direct application

Objective:

 Natural antimicrobial agent for prolonging the shelf life (Clean labelling)

Procedure:

- Measurement of the antimicrobial effect (in vitro)
- Determination of key parameters/factors (e.g. pH value)
- Evaluation of the sensory properties (suitability) of the plant extracts
- Application tests with foods (ready-to-eat salads, diced fruit, meat marinades, pizza)

Results:

- Effective against gram+ bacteria (e.g. listeria)
- Application in marinated pork: Increased the shelf life by 2 days

Hop extracts vs *Listeria monocytogenes* (marinade)

ALLIANZ

DUSTRIE

Summary

Demand on new innovative ingredients for improved products regarding

- Nutritional value (reduction of salt and fat)
- Sustainability (plant based meat alternatives, hybrid products)
- Safety (antioxidant and antimicrobial properties), Shelf life

We an give you a tailored solution!

Thank you!

Christian Zacherl

Business Development Manager Food christian.zacherl@ivv.fraunhofer.de

www.ivv.fraunhofer.de

Thanks to:

- Daniela Sussmann
- Dominic Wimmer
- Julian Thielmann
- Peter Eisner
- Raffael Osen

