Assessing Animal Sourced Foods
Role in Sustainable Nutrition
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Sustainable Food Systems

e Are protective and respectful of
biodiversity and ecosystems; culturally
acceptable, accessible, economically fair
and affordable; nutritionally adequate, safe
and healthy; while optimizing natural and
human resources (rao, 2010).

Nutrition
and health

e Tradeoffs:

* Energy dense foods often nutrient

Sustainable
diets, food and
nutrition

poor and less expensive

* Nutrient rich foods/diets often have higher
environmental impact — many are animal
sourced foods.

Society
and culture

e Cultural preferences
P Drewnowski et al. (2018) Front. Nutr.

4:74. doi: 10.3389/fnut.2017.00074
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Lifecycle Assessment
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An Introduction to a Systems Framew_c;;k*—',
for Evaluation of Alternate Squ
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Lifecycle Assessment

International
Organization for
Standardization

Systematic quantification of

LCA is described in

ISO 14040, 14044
and 14046
Standards

inputs and outputs for a system
in terms of a functlon%unlt (FU).

* Product Development / Improvement
» Selection of best materials or
process options (e.g. conservation)
* Identification of ‘hotspots’ for
innovation Interpretation
 Benchmarking
* Product labels / marketing
» Strateqic planning
 Inform public policy

Inventory

Attributes or Environmental

* Not: site assessment, EIA characteristics of effects of
limitation of LCIA stage product or product or
process process
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‘Flavors’ of LCA:
attributional and consequential

An attributional product system is composed of:
- an allocated share of the activities that have contributed Engineering
to production, consumption, and disposal of a product, paradlgm_.
processes linked

= tracing the contributing activities backward in time, physically
= Thus, data on specific or market average suppliers are relevant

A consequential product system is composed of: Economic

= the full share of those activities that are expected to change paradigm_:
when producing, consuming, and disposing of a product, Processes linked

via markets

= tracing the consequences of increased demand forward in time,

= Thus, data on marginal suppliers are relevant
(whose activity responds to change in demand)

UNEP/SETAC (2011). Shonan LCA database guidance principles
Weidema, et al., 2018. Attributional or consequential Life Cycle
Assessment: A matter of social responsibility. J. Clean. Prod. 174, 305-314.
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Unit processes: the building blocks of LCA
(both flavors)

Outputs to nature

:‘:"g:lts ey | ACTIVIEY t?)”;l;’#;f
— production/transformation
other - processes
processes
InPUts from nature Accounting of material and energy flows
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Life cycle inventory
analysis:

system boundary with linked unit processes

L1111 11 eisios to nsrenmeb] [ T11]]

Cradle-to-farm gate Farm-to-primary- \
processor gate
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(] . Secondary
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= (precooked
g J]\ | é meals, etc.)
z t g
Q ﬁ Spent | =
£ Breeding Finishing I
(] Other Meat % _
= animals | orocessing and g lljetzller or
) oultry, ' { » Food service
£ g;c_) 7 | Piglets | w:ézet | packaging outlet
:'3 B Mort_a_lity |
o | Wastewater
= treatment
&
Manure Mortality
Management System Management )
Coproduct (eggs, Coproduct (nutrients, Other (wealth Co-products: pet food, Renderin
chicken LW) energy); Residual or Waste management) Pharmaceuticals, medical g

UNIVERSITY OF

o | ARKANSAS

Congress of Meat Science

2 O 1{? and Technology

Rt s COLLEGE OF ENGINEERING




Life Cycle Impact Assessment

Inventory results (LCI)

Hundreds of

Substance Compartment/ | Unit Total individual

Aluminum Alr g 27 emiSSionS

Ammaonia Alr mg AR

Amrmonium carbonate Air ng 441

Antimony Air [Als| 952

Antirnony-124 Air By 33 Impact Assessment
Antimaony-125 Alr nBq 344

Argan-41 Alr Bqg 7.34 resu Its

Arsenic Air [Als| 97

Barium Air [Als| 100

Barium-140 Air WBg 223 Impact category £ || Total
Benzaldehyde Alr nog 175

Benzene Ar mg E 74 Carcinogens 2. 35E-5
Eenzene, ethyl- Ajr Tz 149 Fesp. organics J03E6
Benzene, hexachloro- Air ng B6.2 Resp. inorganics 0.0011
Benzene, pentachloro- Alr ils| a04g Climate change noon43z
Benzo(a)pyrene Alr Ha 237 Fadiation 1 21E-B
Berylium Alr ng 2e? DOzaone layer B.1GE4
Boron Alr mg 987 Ecotoxicity 115E5
Bromine Al Ha B8 Acidification/ Eutrophication | 0.000128
Butadiene Air [as] 234

Eutane Air mg 107 Land use 1.85E-B
Butene Air lig 145 Minerals 1.3E-R
Cadmium Ar Py 106 FO“OWing Fossil fuels 000624
Calcium Air mg 1.36 .

Carbon-14 Air By 285 environmental

Carbon dioxide, bhiogenic Alr g 463

cause-effect chain

" Carbon dioxide, fossil
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Impact Assessment: Climate Change

Emissions (e.g., CFCs, HFCs, CO,)

Chemicals trap heat otherwise reflected back to atmosphere

v

(Global warming potential (GWP)

o o
mldPOmt based on chemical’s radiative forcing and lifetime
v

Climate change affects temperature,
precipitation, and sea level

c,
Human health / En d O 1 1/1 t

(e.g., malaria) : Specles damage
Agricultural effects Cnastal area damage

Forest effects Water resource effects
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Some Connections are More
Important
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What can LCA tell us now?

Environmental focus on production and consumption
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Carbon Footprint of Milk

National Farm Survey Summary
3.0 1

5.3&3.5
whole farm outliers

3.7
- | conversion
outlier

N
(&)
1

Large variation in
existing system
implies opportunity
for sector level
improvement without
radical or disruptive
technology
advancement:

N
o
1

1.0

kg CO,e/kg FPCM at farm gate
> o

-

T
—
(@) ]
Feed Conversion or Allocation Ratio

We can make

progress in the near 0.5 1
term. i
00 # T T T T T 00
Fuel Print Enteric Print Feed Print  Manure  Farm Print Feed Allocation
Print Conversion Ratio
Emission Source Characterization
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Food loss induced redistribution

1,000
900
M Individual Stage Contribution
800
B Induced Raw Milk
700
B Induced Processing & Container
= 600 o —
- M Induced Distribution Center Responsibility for
v
o 500 ¥ Induced Retail Center ups.trgam )
O emissions Is not
£ 400 normally
% attributed to
300
O downstream
200 demand.
0
Raw milk Processing Distribution Retail Consumption
production & Container Center Center & EOL

& transport
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Estimated Change in GWP from Alternate US Pork
Production Strategies: Tradeoffs

9.0 -

0

8.5 -

80 - LB

Production simulation
model* used as input for
LCA modeling in Simapro
software (adds full

$ upstream supply chain as
7.0 - well as Monte Carlo
$—$—$ simulation)

6.5 - *https://resilientfood.uark.edu

7.5 -

Global Warming Potential
(kg CO2e) / kg at farm gate
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Contribution analysis:

35
" 3.0 r M Electricity
eer 1arm 10Cation matters /. B Affalfa hay
E‘n 2.5
20 < .
- 5 20 | B Corn grain
18 | N
E 8 1.5 | m Farm trucks
16 ¢ - »
* Matched farm size and practices - Lo r DDGS
. | P = 4
Differences driven mainly by %0 12 . . Corn gluten meal
pasture-related emissions S 10 E — —
e Farm B pasture emits ~8X more 8 8 F
U -
N,O per ha than Farm E 00 6 F
4 L
* Pasture includes resource use 4 F
associated with maintenance and 2
emissions resulting from deposited 0 Gt
manure and fertilizers A B C D E
m Vitamin premix W Natural gas B Purchased hay
H Diesel fuel B Electricity B Alfalfa hay
m Corn grain ® Farm trucks DDGS
m Corn gluten meal W Grass pasture B Cattle
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Adaptively Managed Paddock
vs. Conventional Grazing

50
IFSM simulations of archetypical beef 45
production in the Southeast. Both 40
archetypes are Conventional Grazing 2 3
(CG) Cow-Calf-Finish operations. NC is .%
grain finished; VA is grass finished. = 30
The AMP alternatives were § 25
constructed by applying the low, % 20
average, and high carbon Lé)o 15
sequestration levels from Teague et =
al. (2017) on a per hectare basis, g 10 I I I
applied post-hoc to the archetype O >
simulations. -
Both farms produced approximately 3 g '§o _§ %D & E
250 kg CW (cull plus finished) per ha, % o CEL % < %
and therefore the delta from AMP < s < < 2 <
observed is similar for both. NC-CCF VA-CCE-G
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(USA) diet patterns
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Food loss/waste effect

Total Vegetables
Fruit and Juices
Milk and Dairy
Grains

Total Red Meat
Sweeteners
Poultry

Fats and Oils
Fish/Seafood
Eggs

Beans and Peas
Nuts and Seeds

W CFP 2547 Consumed
CFP 2547 Loss

B RFP 2000 Consumed

® RFP 2000 Loss

B RFP 2600 Consumed

m RFP 2600 Loss

o

200 400 600 800
kg per household per year

)F
1000 §
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Global Carbon Project

GLOBAL METHANE BUDGET

TOTAL EMISSIONS GROWTH RATE TOTAL SINKS
10
558 (9.4-10.6) 548
(540-568) (529-555)
' &
105 188 34 167 515 33
(77-133) (115-243) (15-53) (127-202) 21 132) (510-583) (28-38)
. Sink from
. chemical reactions
&, in the atmosphere
4 Yy 2
Sink in soils

R LR Y = P b

Biomass - L

burning Wetlands Other natural
emissions

——— Geological, lakes, termites,
EMISSIONS BY SOURCE gLeATE Bees
oo BAL ':*"l" FONDATION

Fossil fuel

production and use Agriculture and waste

In million-tons of CH4 per year ( Tg CH4 / yr), average 2003-2012
Natural and anthropogenic ki <. | BNP PARIBAS
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Biogenic CH4 # Fossil CH4

S— Biogenic CH4 degrades to
mm.‘,&:’a wie CO2 and is then recycled
atmosphere as we have: throygh photosynthesis.

exceeded the ability of . '
plants and the ocean o Unless there is an increase

/_\ lakeupnew €Oz in the rate of biogenic CH4
emission, the net effect on
the climate is neutral.

The radiative forcing is
driven by the
concentration in the
atmosphere while the

| GWP is calculated for each

new ‘puff’ of CH4.
e
Fossil fuels All already agree that the
(old photosynthetic carbon - . .
100 to 200 million years old Cllmate Change |mpaCt Of
not in the carbon cvele) respiration iS ze rO!
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Trends in Beef Biogenic Methane

180
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“Falling short-lived climate pollutant (e.g. methane) emissions lead to falling global
temperatures, while nominally “equivalent” CO2 emissions, whether computed using
GWP, global temperature-change potential (GTP) or any other conventional metric,
would incorrectly suggest that these falling emissions would cause further warming.”
Allen M.R. et al. (2018) Climate and Atmospheric Science 1,
doi:10.1038/s41612-018-0026-8

MMT CO2e Enteric + Manure (Methane)

0
1980 1985 1990 1995 2000 2005 2010 2015 2020
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Challenges in LCA of food systems

Data Availability — proxy & substitution can introduce error/ uncertainty
* Incompatibility of sources, not all in public domain, extant data not always specific to food

* LClin agriculture often modeled (multiple models, variable predictions)

Spatially Extensive — but LCA integrates the supply chain
» Geospatially explicit LCl and LCIA in nascent stages

Dynamic Systems — LCA is (generally) a static model

* |s a static model still useful — yes, many situations.

Impacts modeled — not benefits (evolving this direction)

Incomplete metrics (in LCA framework)

* Biodiversity, Ecosystem Services, Carbon Sequestration, Ocean Plastics, Soil Health,
Nutrition
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Challenge of Incorporating Nutrition
in the LCA framework

A 24t
Processed
fruits & veg.
[n=43]

Meat & meat

prod. [n=127] i

15* 23
Milk & dairy

products
[n=74]

Grains &

other foods
(ref) [n=11 0]

Sweets
[n=129]

100 200 360 400 SﬁO 600
Mean GHGE per 100 g

o

m Agriculture  mProcessing mTransportation ®mPackaging ® Store

of Meat Science
ology

I E 0 M ST 3 at ic:m_al

y | el ama 0 1L com

Processed
fruits & veg. 110 301 461
|n-43]

—

Meat & meat 281 13 a2t
prod. [n=127]

Milk & dairy
products 175 1 11 33 1
[n=74]

Grains &

other foods 87 9 17
(ref) [n=110]

Sweets JFEES 16
[n=129]

6t
100 150 200 250 300 350 400 450
Mean GHGE per 100 kcal

g |

700

Drewnowski, A., et al., 2015. Am. J. Clin. Nutr. 101, 184-191.
DOI:10.3945/ajcn.114.092486

UNIVERSITY OF

ARKANSAS

COLLEGE OF ENGINEERING




Incorporating Nutrition into LCA

* Impact or Function?

* Nutrient content clearly a characteristic of foods — logical it be considered a functional
characteristic

* Comparison becomes problematic — how to get the same functional unit?

* |f nutrition effects are considered, then it is logical to consider the health impact in a conceptually
similar manner to GHG emissions affecting climate

e Comparison is less problematic — we can use a food, meal or diet as the functional unit

* NUTES

* in development — based on RDA of 30 macro/micronutrients; no negative scores

* Nutrient Density/Indices

* e.g., NRF9.3 and many others — accounts for beneficial and detrimental components of foods

* CONE LCA

* Based on global burden of disease risks of NCD to assign DALY to food groups which can be
summed with environmental DALY for a single human health impact score.

* Relaxes the restrictions on functional unit (can now be a meal or diet).
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COmbined Nutritional and Environmental
Life Cycle Assessment

Comparison Food items Inventory i
basis & diet & nutrients Impact Benefit

Resource 1
‘ Resource 2 ' IE| +1 serving milk
' Resource n I
TR Emission 1
Food 1 H . -
. N Emission 2 +1 serving milk

Comparison basis I Food 2

B GHG short term, milk

I GHG short term, substitution
B Total PM, ., milk

. Total PM, , substitution

. Prostate cancer, milk

I Colorectal cancer, milk

- reduction in
Functional unit el N average diet B All stroke outcomes, milk
B 5SB-related diseases
---------- 1 95% confidence interval

i + 1 serving milk
IFIO g Nutrient1 Jy - sweetened and

“ \m sugar beverages at

i (SSB)
-3 -2 -1 0 1 2 3 4
B Foods & diets B Nutritional D Human Health Impacts and Benefits
assessment (avoided puDALYS/person/day)

Stylianou, et al., 2016. Int. J. Life Cycle Assess.
21, 734-746. d0i:10.1007/s11367-015-0961-0
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Assessment needs:
Data, metrics, integrated modeling

» Data should be transparent (to maximum extent
feasible), validated, widely available, inexpensive.
(e.g., NAL digital commons)

* Need for comparable metrics that span sectors,
industries and geographies
» Sustainability metrics should be science-based: life

cycle assessment as system model supported by
production, nutrition, economic and social components

 The same data and models should be used by
producers, retailers, policymakers, NGOs and
consumers.
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Data

Production, processing,
consumption, waste, disposal.
Nutrient composition, dietary
intake and link to health outcomes.
Economics (cost, value added) of
production and consumption
chains: livelihoods and
affordability; costs.

Metrics

Environmental footprints/index
Affordability index

Nutrient quality index (foods &
diet); Safety and health outcomes
(DALYs).

Cultural and other choice
restrictions

Integrated
Modeling

Production (process/big data/
statistical); Environment/health
(LCA); Economic (GEM, PEM, LCC);
Cultural/regulatory factors; effect
of climate on production/nutrition
=>

evaluation of alternatives,
tradeoffs identified
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Some benefits of ASF not fully
accounted in most LCA

* Production on marginal land not suited for row crops.

* Upcycling of low-quality feed (food waste and
byproducts — citrus pulp, almond hulls) to high-quality
protein.

* US ASF provide 24% of energy, 48% of protein approximately
50% of the essential amino acids and essential fatty acids as
well as micronutrients (White and Hall, 2017).

 Micronutrient health benefits: Fe, Zn, B-12, Se

* Extensive production systems enhance ecosystem
services; potential for C sequestration in grasslands.

* Livelihoods, wealth management, draught power,
nutrition for developing world.
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Sustainability Assessment of
Animal Sourced Foods

Ensuring that future generations can provide for themselves (both quantity
and quality = nutrition security).

Systems framework is necessary for capturing and interpreting measures
and metrics and identifying trade offs to support informed decisions.

Resources are beginning to constrain production:
* We need measures and metrics to document and track progress and

* |dentify ‘hotspots’ and trade-offs for informed decisions/policy — everyone in the
supply chain should be involved => team must include social scientists.

More development of the benefits of ASF needed within the model
framework: nutrition, ecosystem services, livelihoods.

Linkage and integration of multiple models and tools is essential to drive
improved outcomes: Social, Economic, Environmental and Health
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