# P-04-10

# Color of *longissimus thoracis et lumborum* of Danish pork at 24 h and 48 h postmortem (#204)

# Kathrine H. Bak<sup>1</sup>, Stephan A. T. H. Ha<sup>1</sup>, Marchen Hviid<sup>2</sup>

<sup>1</sup> University of Copenhagen, Department of Food Science, Frederiksberg C, Denmark; <sup>2</sup> Danish Meat Research Institute, Taastrup, Denmark

## Introduction

As part of a larger study evaluating the quality of Danish pork anno 2018, color of *Longissimus thoracis et lumborum* was determined visually and instrumentally at 24 and 48 h postmortem (*pm*). The purpose was to determine any color difference between the two time points and the abattoirs, and if differences could be explained by other quality parameters.

## Methods

In total 120 (5x24) pigs were slaughtered at five abattoirs. Sex, hot carcass weight, lean meat%, and temperature were measured at 45 min *pm*. Loin  $pH_{24}$  was measured when sampling color at 24 h.

Samples (2.5 cm) were taken from *longissimus thoraciset lumborum* between the 6<sup>th</sup> and 7<sup>th</sup> vertebra from the hip. Color measurements were done on bloomed samples (surface exposed to air 60±10 min at 5-9 °C).

Visual color measurements were according to the Japanese pork color standard (JPCS) developed by (Nakai, Saito, Ikeda, Ando, & Kamatsu, 1975) ranging from 1=extremely pale to 6=extremely dark. All JPCS evaluations were done by the same trained employee.

Instrumental color measurements (4 per sample) used a Minolta Chroma Meter (CR-300, Konica Minolta, Japan), illuminant  $D_{65'}$  observer angle 0°, aperture size 8 mm.

Pigment content (ppm hemin) was determined by a modified procedure after (Hornsey, 1956).

Total color change ( $\Delta E^*$ ) was calculated according to (Choe et al., 2008)  $\Delta E^* = (\Delta L^{*\wedge}2 + \Delta a^{*\wedge}2 + \Delta b^{*\wedge}2)^{\wedge}$ /2.

Student's t-test compared smaller sets within the whole dataset, incl. differences between abattoirs.

### Results

There was no visual color difference, but a significant difference in L\* and a\* (Table 1).

| Variables | t <sub>24h</sub> | t <sub>48h</sub> | Р   |
|-----------|------------------|------------------|-----|
| JPCS      | 3.34             | 3.38             | NS  |
| L*        | 52.23            | 55.21            | *** |
| a*        | 6.25             | 6.53             | *** |
| b*        | 3.92             | 3.98             | NS  |

Table 1. Color at t24 vs. t48 compared via t-test.

P>0.05=NS (not significant), P<0.05=\*, P<0.005=\*\* P<0.0005=\*\*

There was a discrepancy between abattoir E and the other four abattoirs (Table 2). Abattoir E had a significantly smaller increase in L\* and smaller

 $\Delta E^{*}.$  L\* was higher for abattoir E at  $t_{24h}$  but the difference was evened out at  $t_{40h}$  (Fig. 1).

| 48n `                              | 48h (* 1917) |       |       |       |       |                                          |     |     |    |  |  |
|------------------------------------|--------------|-------|-------|-------|-------|------------------------------------------|-----|-----|----|--|--|
| All ab-<br>attoirs                 |              |       |       |       |       |                                          |     |     |    |  |  |
|                                    |              |       |       |       |       | Signif-<br>icance<br>vs. ab-<br>attoir E |     |     |    |  |  |
| Abat-<br>toirs                     | A            | В     | С     | D     | E     | A                                        | В   | С   | D  |  |  |
| ΔL*                                | 2.91         | 3.47  | 3.57  | 3.34  | 1.60  | *                                        | **  | **  | ** |  |  |
| ∆a*                                | 0.33         | 0.12  | 0.19  | 0.30  | 0.44  | NS                                       | NS  | NS  | NS |  |  |
| ∆b*                                | 0.14         | -0.21 | 0.01  | -0.02 | 0.37  | NS                                       | **  | *   | *  |  |  |
| ΔE*                                | 3.16         | 3.75  | 3.78  | 3.59  | 1.95  | *                                        | *** | *** | ** |  |  |
| pH <sub>24h</sub>                  | 5.64         | 5.70  | 5.69  | 5.57  | 5.69  | NS                                       | NS  | NS  | ** |  |  |
| H o t<br>carcass<br>weight<br>(kg) | 88.51        | 86.56 | 85.80 | 87.82 | 83.00 | *                                        | NS  | NS  | *  |  |  |
| Meat%                              | 60.30        | 60.75 | 60.55 | 61.56 | 59.85 | NS                                       | NS  | NS  | NS |  |  |
| T<br>(°Ć) <sup>5 min</sup>         | 39.10        | 39.53 | 39.93 | 39.71 | 39.48 | **                                       | NS  | *   | NS |  |  |
| Hemin<br>(ppm)                     | 24.88        | 23.75 | 22.71 | 23.83 | 24.13 | NS                                       | NS  | NS  | NS |  |  |
| ΔJPCS                              | 0.08         | 0.33  | -0.27 | -0.06 | -0.29 | NS                                       | **  | NS  | NS |  |  |

**Table 2.** Instrumental and visual color change  $(t_{48h}-t_{24h})$ , hemin, weight, meat%,  $T_{45min}$ , and pH<sub>45min</sub>; and abattoirs A-D vs. abattoir E. P>0.05=NS, P<0.05=\*, P<0.005=\*\*, P<0.005=\*\*\*

There was no systematic explanation of the color differences, though significant effects of pH<sub>24h</sub>, hot carcass weight, and T<sub>45min</sub> between abattoir E and some but not all other abattoirs were found. There was no difference in hemin (Table 2). A significantly larger  $\Delta E^*$  was found for males than for sows and castrates, possibly explaining part of the difference, as males were only found in abattoirs B and C.

### Conclusion

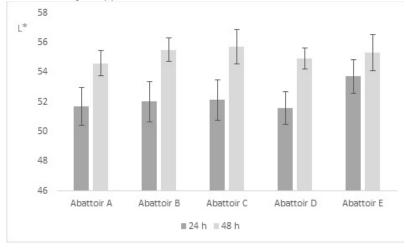
The significant instrumental color difference between 24 h and 48 h pm must be taken into account when building color-monitoring equipment for the slaughter line. Slightly different slaughtering procedures are a plausible cause for the color difference between abattoirs (MacDougall, 1982). The significant color changes observed between t<sub>24h</sub> and t<sub>48h</sub> are probably caused by changes in muscle structure. An increase in L\* can be caused by increased light scattering, e.g. as water-holding capacity is reduced

Notes

and protein denaturation increased during conversion from muscle to meat (Pérez-Alvarez & Fernández-López, 2008). Myoglobin chemical form affects L\*a\*b\* (Lindahl, Lundström, & Tornberg, 2001). The change in a\*, though significant, was quite small, hence, changes in muscle structure are likely a more significant contributor to the increase in L\*.

#### References

Choe, J. H., Choi, Y. M., Lee, S. H., Shin, H. G., Ryu, Y. C., Hong, K. C., & Kim, B. C. (2008). The relation between glycogen, lactate content and muscle fiber type composition, and their influence on postmortem glycolytic rate and pork quality. *Meat Science*, *80*(2), 355-362.


Hornsey, H. C. (1956). The colour of cooked cured pork. I.—Estimation of the Nitric oxide-Haem Pigments. *Journal of the Science of Food and Agriculture*, 7(8), 534-540.

Lindahl, G., Lundström, K., & Tornberg, E. (2001). Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. *Meat Science*, *59*(2), 141-151.

MacDougall, D. B. (1982). Changes in the colour and opacity of meat. *Food Chemistry*, 9(1), 75-88.

Nakai, H., Saito, F., Ikeda, T., Ando, S., & Kamatsu, A. (1975). Standard models of pork-colour. *Bulletin of National Institute of Animal Industry (Japan)*(29), 69-74.

Pérez-Alvarez, J. A., & Fernández-López, J. (2008). Color Measurements on Muscle-Based Foods. In L. M. L. Nollet & F. Toldrá (Eds.), *Handbook of Muscle Food Analysis* (pp. 467-478). Boca Raton: CRC Press



#### Figure 1.

L\* at 24 h and 48 h pm.

Notes