SAMPLE SIZE FOR DETERMINATION OF CHEMICAL INTRAMUSCULAR FAT IN BEEF

Sarah M. Stewart^{1*}, Graham E. Gardner² and Garth. Tarr³

¹ Advanced Livestock Measurement Technologies (ALMTech), Murdoch University, Western Australia 6150, Australia ²School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia *Corresponding author email: <u>S.Stewart@murdoch.edu.au</u>

I. INTRODUCTION

Emerging technologies are being developed which will allow for the objective measurement of intramuscular fat (IMF) in Australian beef. These technologies require a uniform gold-standard for IMF, enabling them to train upon and become accredited to predict this trait. Several studies have demonstrated that the distribution of fat varies within the M. *Longissimus* of beef carcasses [1, 2, 3]. Therefore, sub-sampling for IMF% may therefore inadvertently introduce error when quantifying IMF% at a cut level. Recent work has demonstrated that 80% of the marbling within the anterior M. *Longissimus thoracis lumborum* (striploin) is present as a single interconnected entity rather than as isolated flecks [4] and independent of marbling level. This would indicate that marbling distribution is relatively consistent within the anterior striploin [3]. Therefore, it was hypothesised that cumulative cross-sectional sampling of the anterior striploin would minimise sampling error to a negligible amount when quantifying the IMF% in beef striploins.

II. MATERIALS AND METHODS

A total of 60 M. *Longissimus thoracis lumborum* (striploin) were collected from carcasses (19 cows, 41 yearlings) processed at a commercial abattoir. Carcasses were graded for MSA marbling at the 11/12th rib (320 ± 125.5 , 140 - 650). and yearlings were graded at the 12th/13th rib (380 ± 156.3 , 140 - 670). Striploins were dissected from the carcass and vacuum packed and stored overnight at 1°C until the next day. Striploins were trimmed of all subcutaneous fat, connective tissue (epimysium) and M. *Gluteus medius*. Fifteen slices were dissected from the anterior (graded) end (10 x 5mm; slice 5 x 10mm) and 10 slices (10 x 10mm) were dissected from the posterior end of the striploin. Slices were diced, placed into pre-weighed tubes and weighed prior to freezing at -20°C. Samples were then freeze-dried and weighed to determine dry matter percentage (%). Dried samples were ground and IMF% content was determined using chloroform soxhlet calibrated lab based Near Infra-red (NIR) analysis and reported on a wet matter basis. Cumulative slice IMF% was calculated by averaging the IMF% of each progressive slice. Sampling error was analysed as the absolute difference between cumulative slice IMF% and IMF% of the striploin (average of all slices). Data was analysed using the tidyverse and ggplot packages in R [5].

III. RESULTS AND DISCUSSION

In line with the hypothesis, sampling error declined rapidly with increasing sample size and at 15mm depth, maximum error for most samples was less than 0.45% IMF% (Figure 1). From an industry perspective this means that a sample size of approximately 15mm from the grading site is sufficient to minimise sampling error and quantify total IMF% in striploins. Where larger cumulative errors were observed (Figure 1), they may have been caused by heterogeneity or distribution of fat seams [4] within samples. Further work to understand if alternative sampling sizes for IMF% are required for high marbling phenotypes (> MSA marbling score 700).

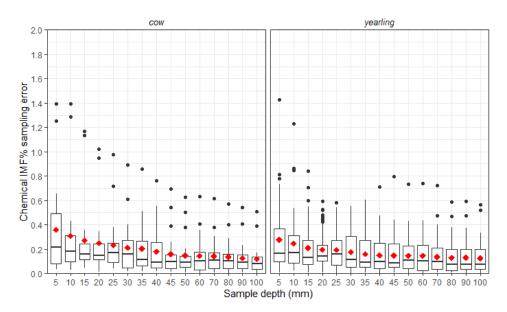


Figure 1. Boxplot showing the median, minimum, maximum, 1st and 3rd quartile and mean (diamond) for chemical IMF% sampling error with increasing sample depth (mm). Black icons (•) represent extreme observations

IV. CONCLUSION

Sampling error decreased rapidly with cumulative sampling and 15mm sample depth is sufficient to minimise chemical IMF% sampling error in striploins. Additional work using higher marbled striploins is required to quantify sampling error and sample size at higher levels of IMF%.

ACKNOWLEDGEMENTS

This project was co-ordinated through the Advanced Livestock Measurement Technologies Project (ALMTech) and funded by the Department of Agriculture and Water Resources Rural Research and Development (R&D) for Profit program. The authors gratefully acknowledge the contribution of the staff and resources at collaborating processors and Murdoch University with regards to data, sample collection, preparation and analysis.

REFERENCES

- 1. Blumer, T., Craig, H., Pierce, E., Smart, W., & Wise, M. (1962). Nature and variability of marbling deposits in longissimus dorsi muscle of beef carcasses. Journal of Animal Science 21: 935-942.
- 2. Zembayashi, M., & Lunt, D. K. (1995). Distribution of intramuscular lipid throughout M. *Longissimus thoracis et lumborum* in Japanese Black, Japanese Shorthorn, Holstein and Japanese Black crossbreds. Meat Science 40: 211-216.
- 3. Cook, C. F., Bray, R. W., & Weckel, K. G. (1964). Variations in the quantity and distribution of lipid in bovine longissimus dorsi. Journal of Animal Science, 23(2), 329–331.
- 4. Bottema, M. J., Kruk, Z. A., Gontar, A., Pitchford, W. S., & Bottema, C. D. (2020). Evidence of marbling as a single connected entity in beef striploins. Meat Science 161: 108004.
- 5. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., & Hester, J. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43): 1686.
- 6. Harper, G., and Pethick. D., (2004). How might marbling begin? Australian Journal of Experimental Agriculture 44: 653-662.