THE IMPACT OF AGING PARAMETERS ON DRY-AGED BEEF FLAVOR

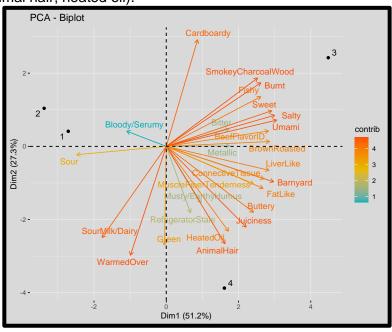
Nicolas J. Herrera^{*1}, Chris R. Calkins¹, Gary A. Sullivan¹, Shangshang Wang², Thu Dinh²,

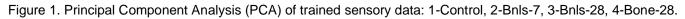
Rhonda K. Miller³ Chris Kerth³

¹Department of Animal Science, Meat Science, University of Nebraska-Lincoln, United States ²Department of Animal and Dairy Sciences, Mississippi State University, United States ³Department of Animal Science, Texas A&M University, United States *Corresponding author email: <u>nherrera18@huskers.unl.edu</u>

I. INTRODUCTION

Over the past two decades, dry-aged beef has garnered interest from consumers and restaurants for its unique flavor, creating a premium for dry-aging [1]. To ensure quality, scientists researched dry-aged beef flavor development. However, the literature reports a variety of dry-aging conditions, making is a challenge to connect dry aging parameters to specific flavor attributes [2]. Therefore, it is valuable to examine dry-aging parameters and their impact on flavor development. Dry-aged flavor generation stems from aging (creation effects) and the degree of moisture loss (concentration effects) [5]. Conditions that create similar levels of either percentage moisture loss or aging time could improve understanding of the relationship between creation and concentration effects on dry-aged flavor. The Agenator system [3] offers the opportunity to evaluate flavor creation and concentration. Increase understanding could help develop an excellent eating experience and optimize dry-aging strategies for beef. Therefore, our objectives were to identify the individual and combined impact of creation and concentration on dry-aged beef yield, composition, and flavor development.


II. MATERIALS AND METHODS


Eleven pairs of upper 2/3 USDA Choice bone-in strip loins were collected 48 hours post-mortem and split in half, totalling 4 halved portions per animal (n=44). Halves were randomly assigned to one of four treatments: Two day wet-aged (Control), seven day boneless dry-aged (BnIs-7), twenty-eight day boneless dry-aged (BnIs-28), and twenty-eight day bone-in dry-aged (Bone-28). Loin halves were weighed and individually dry-aged in the Agenator system, a precisely controlled dry-age system, set at 70% relative humidity (\pm 0.1%), 0.8 m³/min air flow (\pm 0.015m³/min), 2°C temperature (\pm 0.5°C), and mass (\pm 5g) and recording every 10 minutes throughout aging. After aging, loins were weighed and fabricated for percentage total moisture, trim, and yield loss. Samples were evaluated for composition, water activity (a_w), pH, lipid oxidation, fatty acid composition, free amino acids (FAA), and sensory evaluation (trained and consumer panels, volatile composition, and Principal Component Analysis [PCA]). significance set at P < 0.05. Data were analysed as a completely randomized block design, with animal set as the block and significance set at P < 0.05.

III. RESULTS AND DISCUSSION

Among dry-aging treatments, Bnls-28 had greater moisture (19.5%) and trim loss (26.4%) compared to Bone-28 (12.5, 17.3%) and Bnls-7 (10.8, 22.3%), respectively. Bone-28 had greater moisture loss compared to Bnls-7. Bnls-7 had a greater percent yield compared to Bone-28 and Bnls-28. Loss was predicated on length of aging and moisture diffusion out from meat. Days of aging impacted saleable yield, though bone did improve yield under similar aging times. Bnls-28 had greater polyunsaturated fatty acid content compared to all treatments. Lipid oxidation and pH were greater in dry-age treatments, due to increased aging and time exposed to aerobic conditions. Results show creation effects, (Bnls-7 versus Bone-28), elicited dry-age flavor precursors. Added aging time (Bnls-28, Bone-28) increased FAA content in twenty-one amino acids compared to Bnls-7. This was expected, as enzymatic aging increases

degradation of proteins into peptides and amino acids. Creation effects also increased volatile formation. Bone-28 had greater 1-Octen-3-ol (mushroom) content, and tended to have greater 2-methyl-butanal (chocolate), hexanoic acid (ether), and nonanal (green) compared to Bnls-7. Interestingly, Bnls-7 had greater 2,3-butanedione (buttery odor) and 4-methyl-undecane compared to Bone-28, though 4-methylundecane fell below the odor threshold for human detection [4]. Increased aging changed volatile composition complexity, which could contribute to flavor formation. Trained panel data showed Bone-28 favored fundamental palatability traits (juiciness, muscle fiber tenderness, connective tissue) with more fat-like and buttery flavor. Hedonic testing showed consumers found increased tenderness in Bone-28 samples. The concentration effect, (Bone-28 versus Bnls-28), showed subtle differences. Bnls-28 was greater in fourteen amino acids compared to Bone-28, when Bone-28 was greater in only one. Bnls-28 had greater 3-ethyl-2,5-dimethyl-pyrazine (nutty, roasted) content compared to Bone-28, suggesting moisture loss increased flavor intensity from precursors in raw (FAA) and cooked (volatiles). Bnls-28 was greater in salty intensity compared to Bone-28. Using PCA (Fig. 1), Bnls-28 flavor is strongly tied to basic beef taste attributes (salty, sweet, umami, beef ID, brown roasted) and oxidation (burnt, metallic, fishy, bitter, cardboardy). In contrast, Bone-28 flavor was strongly linked to fundamental meat palatability traits (juiciness, tenderness, and connective tissue) with more buttery and fat-like flavor and more pungent aromas (barnyard, animal hair, heated oil).

IV. CONCLUSION

Among dry-aging treatments, bone improved product yield and moisture. This alters both the final product's composition (pH, a_w, moisture, protein, fatty acids), and flavor precursors (free amino acids, volatiles). Comparing dry-aging creation effects (BnIs-7 vs Bone-28), added aging facilitated the generation of flavor and flavor precursors (volatiles and amino acids). By comparison, concentration effect (BnIs-28 vs Bone-28) exhibited greater attributes related to flavor intensity (volatiles, trained panel data).

REFERENCES

- 1. Dashdorj, D., Tripathi, V. K., Cho, S., Kim, Y., Hwang, I. (2016). Dry aging of beef: review. Journal of Animal Science and Technology 58: 1-11.
- 2. Terjung, N., Witte, F., Heinz, V. (2021). The dry aged beef paradox: why dry aging is sometime not better than wet aging. Meat Science 172: 1-12.
- 3. Lau, S. K., Ribeiro, F. A., Subbiah, J., Calkins, C. R. (2019). Agenator: an open source computer-controlled dry aging system for beef. HardwareX 6: 1-27.
- 4. Burdock, G. A. (2010). Fenaroli's Handbook of Flavour Ingredients. Boca Raton: CRC Press.
- 5. Savell, J. W., Gehring, K. (2018). Dry-aged beef revival: new thoughts on an old process. https://www.meatpoultry.com/articles/19412-dry-aged-beef-revival