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I. INTRODUCTION 
 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has improved the depth and scale of 

proteome analysis, where a summation of unique peptides is often used to calculate the abundance 

of individual proteins. Postmortem proteolytic and metabolic changes in pork alter protein solubility 

and yield a distinct proteome from living muscle. These changes drive development of pork quality [1], 

specifically meat tenderness, as pork chops with different tenderness values have varying degrees of 

proteolysis, resulting in different proteomes [2]. The extent to which tryptic peptides can help 

characterize the molecular phenotype and predict fresh pork quality is not known. The objective was 

to determine the utility of individual peptide abundances and machine learning models to predict pork 

tenderness. It was hypothesized that the unique peptide abundances would predict pork tenderness. 
 

II. MATERIALS AND METHODS 
 

Fresh pork loins (N = 120) were collected from a commercial harvest facility at 1 d postmortem. Quality 

attributes were assessed at 1 d postmortem and after approximately 2 weeks of aging [3]. Chops were 

ranked based on instrumental star probe (SP) values, a measure of meat tenderness, and divided into 

4 distinct categories (A, 𝑥̅ = 4.23 kg, 3.43–4.55 kg; B, 𝑥̅ = 4.79 kg, 4.66–5.00 kg; C, 𝑥̅ = 5.43 kg, 5.20–

5.64 kg; D, 𝑥̅ = 6.21 kg, 5.70–7.41 kg; n = 25 per category). Aged chops were homogenized in liquid 

nitrogen, and proteins soluble in a low-ionic strength buffer (50 mM Tris-HCl [pH 8.5] and 1 mM 

ethylenediaminetetraacetic acid; Sarcoplasmic) were extracted. Separately, the insoluble protein from 

the sarcoplasmic extract was collected and washed with Standard Salt Solution (100 mM potassium 

chloride, 20 mM potassium phosphate, 2 mM magnesium chloride, 2 mM 

ethylenebis[oxyethylenenitroilo] tetraacetic acid, and 1 mM sodium azide) and Tris Wash Buffer (5 mM 

Tris-HCl [pH 8.0]), and solubilized in a buffer containing 8.3 M urea, 2 M thiourea, and 1% dithiothreitol 

(Myofibrillar) [4]. Protein concentration was determined on each extract. The two protein fractions for 

each sample were analyzed in separate LC-MS/MS experiments but were prepared following a similar 

protocol. Samples were processed and analyzed with LC-MS/MS as described [3]. Within a run, 

peptide ratios were calculated, comparing each sample to the master control abundance for that run. 

Only peptides identified as unique and used to calculate protein abundance were utilized. All analyses 

were conducted in R (v. 4.2.2) and RStudio using the caret package [5]. Peptide data were log2 

transformed and median normalized. Only peptides identified in at least half of the samples (n > 50) 

were retained. Missing values were imputed using a bagged tree model using the missForest package. 

Data were split into training (80%) and testing (20%) subsets with equal distribution of predicted 

variables represented between the subsets. Highly correlated predictors were removed (Pearson’s     

|r| > 0.90). Recursive feature elimination was conducted using the rfe function from the caret package 

and assessed with 10-fold cross-validation repeated 5 times. Machine learning models were employed 

to predict SP category (classification) and value (regression). Models were trained using 10-fold cross-

validation repeated 5 times, and the best resulting model was used to predict the testing set. The 

predictive metrics of each model were assessed using model accuracy, Cohen’s kappa coefficient 

(Kappa), predicted root mean square error (RMSE), and mean absolute error (MAE). 
 

III. RESULTS AND DISCUSSION 
 

Predictor variable summary information after each filtering step is outlined in Table 1. Model predictive 
abilities are highlighted in Table 2. The top 4 predictors of importance for star probe category included 
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titin isoform X6, AMP deaminase, and fumarate hydratase peptides from the sarcoplasmic fraction and 
an elongation factor 1-alpha peptide from the myofibrillar fraction. The top 4 predictors of importance 
for star probe value were three titin isoform X6 peptides from the sarcoplasmic fraction and one 
elongation factor 1-alpha peptide from the myofibrillar fraction. Models with the highest classification 
accuracy were bagged classification and regression trees and random forest with 55% and 50% 
accuracy, respectively. Models with the best regression performance included a support vector 
machine- polynomial kernel and stochastic gradient boosting with the lowest RMSE and MAE values. 

Table 1 Summary information on predictor variables  

Predictor Variables Total Filter n > 501 Filter |r| > 0.902 

Sarcoplasmic Fraction 5,119 2,178 1,545 

Myofibrillar Fraction 2,777 1,547 434 

        1 Number of predictors after removing those in fewer than 50 samples  

        2 Number of predictors after removing highly correlated predictors 

 

Table 2 Predictive metrics of machine learning models for classification and regression analyses 

 

IV. CONCLUSION 
 

The fractionation of proteins based on solubility highlights the complexity of the aged meat proteome 

compared to the proteome of muscle. Individual peptide data were predictive of SP category and value 

using classification and regression approaches. Future work with a greater number of samples and 

more refined and tuned models will help validate these observations and identify predictors associated 

with pork tenderness. 
 

ACKNOWLEDGEMENTS 
 

Funding from the USDA-NIFA project 2019 6701729181, IAHEES project IOW04121, and the National Science 

Foundation under Grant No. DGE-1828942 is acknowledged. 

 

REFERENCES 
1. Melody, J. L., Lonergan, S. M., Rowe, L. J., Huiatt, T. W., Mayes, M. S., & Huff-Lonergan, E. (2004). Early 

postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. 
Journal of Animal Science 82: 1195–1205.  

2. Carlson, K. B., Prusa, K. J., Fedler, C. A., Steadham, E. M., Huff-Lonergan, E., & Lonergan, S. M. (2017). 
Proteomic features linked to tenderness of aged pork loins. Journal of Animal Science 95: 2533–2546.  

3. Johnson, L. G., Zhai, C., Reever, L. M., Prusa, K. J., Nair, M. N., Huff-Lonergan, E., & Lonergan, S. M. 
(2023). Characterizing the sarcoplasmic proteome of aged pork chops classified by purge loss. Journal of 
Animal Science 101: 1–12.  

4. Carlson, K. B., Prusa, K. J., Fedler, C. A., Steadham, E. M., Outhouse, A. C., King, D. A., Huff-Lonergan, E., 
& Lonergan, S. M. (2017). Postmortem protein degradation is a key contributor to fresh pork loin tenderness. 
Journal of Animal Science 95: 1574–1586. 

5. Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer New York. 

Model R Package 
Classification  Regression 

Accuracy Kappa  RMSE MAE 

Bagged Classification & Regression Trees ipred 0.55 0.400  0.968 0.863 

Multivariate Adaptive Regression Spline earth 0.35 0.133  0.953 0.819 

Random Forest randomForest 0.50 0.333  0.929 0.840 

Stochastic Gradient Boosting gbm 0.45 0.267  0.887 0.713 

Support Vector Machine- Linear Kernel kernlab 0.35 0.133  0.891 0.782 

Support Vector Machine- Radial Kernel kernlab 0.45 0.267  0.913 0.809 

Support Vector Machine- Polynomial Kernel kernlab 0.25 0.000  0.835 0.720 

Boosted Logistic Regression caTools 0.40 0.187  – – 

Linear Discrimination Analysis MASS 0.40 0.200  – – 

Model Averaged Neural Network nnet 0.45 0.267  – – 

Naive Bayes naivebayes 0.40 0.200  – – 


