SENSORY EVALUATION OF BREAST MEAT FROM BIANCA DI SALUZZO CHICKEN SUPPLEMENTED WITH LIVE AND DRIED BLACK SOLDIER FLY LARVAE

Valeria Zambotto¹, Edoardo Fiorilla², Valentina Bongiorno², Eleonora E. Cappone²,

Marta Gariglio², Laura Gasco³, Giulia M. Daniele⁴, Marta Cianciabella⁴, Achille Schiavone^{1,2},

Francesco Gai^{1*}, Stefano Predieri⁴

¹Institute of Science of Food Production, National Research Council, Italy
²Department of Veterinary Sciences, University of Torino, Italy
³Department of Agricultural, Forest and Food Sciences, University of Torino, Italy
⁴Institute of BioEconomy, National Research Council, Italy
*Corresponding author email: <u>francesco.gai@ispa.cnr.it</u>

I. INTRODUCTION

Insects are currently recognised as one of the most promising alternative and sustainable protein source in poultry nutrition. Along with the necessity to find an alternative and sustainable feed source in animal nutrition, the same is occurring in the meat sector, showing a renovating interest towards rearing slow-growing chicken genotypes. Although scarce information existing on slow-growing chickens' slaughter performances and meat quality, they are known for their natural adaptability in alternative farming systems (i.e., organic farming) and natural resource utilisation, that can affect the sensorial profile of their meats, largely appreciated by consumers. Various sensory studies have been performed on meat derived from insects fed poultry, and the results showed the absence of negative effects on meat sensory attributes [1]. However, any studies have investigated the effects of live and dried Black Soldier Fly (BSF) larvae supplementation on meat sensory properties of a slow-growing chicken genotype, reared in organic systems, at different slaughtering ages.

II. MATERIALS AND METHODS

A total of 192 Bianca di Saluzzo (BS) male chicks were reared from 39 days until slaughtering age. Animals (8 birds/pen, 6 replicates/treatment) were randomly assigned to four experimental treatments: Control soy-based diet (C), Sustainable soy-free diet (S), Sustainable soy-free diet + Live BSF Larvae (SLL) and Sustainable soy-free diet + Dried BSF Larvae (SDL). Based on the expected average daily feed intake, SLL and SDL experimental groups received 15% and 5% supplementation of live and dried BSF larvae, respectively. For this trial animals were slaughtered at two different ages, 150 and 180 days, with 48 birds (2 birds/pen, 12 birds/treatment) slaughtered each. After 24h of refrigeration at 4°C, all the breast fillets were excised, vacuum packed and stored at -20°C before being transported to the laboratory. For sensory evaluation, breast fillets were then thawed and cooked in a water bath at a range temperature of 75 - 85 °C for 40 min. Sensory descriptive analysis were performed in duplicate by 10 trained panellists, with a specific software for sensory data acquisition, (FIZZ Biosystèmes), using a nine-points intensity scale. Sensorial profiles were analysed through the ANOVA and post hoc test (Tukey's HSD) (p<0.05).

III. RESULTS AND DISCUSSION

Both slaughtering ages, 150 and 180 days, showed significant differences in terms of meat "consistency", with the higher intensity in SLL group (Tab.1). The second slaughtering age was also significantly different in "chewiness" and "plant flavor" attributes, with the higher intensity observed in S group. Furthermore, the "plant flavor" was perceived in SDL group too.

	150 Days						180 Days						
Attributes	SLL	SDL	С	S	р	RSE	Attributes	SLL	SDL	С	S	р	RSE
Overall odor	5.80	6.25	6.00	6.25	0.205	0.779	Overall odor	5.30	5.20	5.35	5.70	0.223	0.794
Typical odor	5.50	5.85	5.60	5.85	0.288	0.703	Typical odor	5.10	5.30	5.35	5.70	0.058	0.679
Plant odor	2.60	2.50	2.55	2.60	0.928	0.550	Plant odor	2.15	2.45	2.30	2.40	0.440	0.619
Off odor	1.35	1.50	1.30	1.30	0.541	0.498	Off odor	1.45	1.40	1.40	1.35	0.878	0.384
Consistency**	5.20 ^a	4.30 ^b	5.00 ^{ab}	4.40 ^{ab}	0.009**	0.936	Consistency*	4.90 ^a	4.30 ^{ab}	4.50 ^{ab}	3.80 ^b	0.015*	1.071
Fibrousness	4.35	4.05	4.10	3.85	0.498	1.028	Fibrousness	4.35	3.75	3.95	3.55	0.071	0.977
Flouriness	3.00	2.75	2.75	2.70	0.511	0.687	Flouriness	2.85	3.00	2.70	2.80	0.563	0.674
Greasiness	2.50	2.75	2.50	2.85	0.160	0.597	Greasiness	2.70	3.00	2.65	2.70	0.388	0.708
Adhesiveness	3.85	3.35	3.70	3.70	0.099	0.644	Adhesiveness	3.35	3.60	3.45	3.45	0.751	0.725
Juiciness	3.30	3.25	3.30	3.45	0.808	0.681	Juiciness	3.10	3.30	3.40	3.20	0.709	0.849
Chewiness	4.65	4.85	4.65	4.90	0.886	1.269	Chewiness*	4.00 ^b	4.80 ^{ab}	4.80 ^{ab}	5.50 ^a	0.012*	1.115
Astringency	3.45	3.60	3.65	3.45	0.703	0.672	Astringency	3.15	3.10	3.45	3.45	0.302	0.758
Pungency	2.10	2.05	1.90	2.05	0.531	0.450	Pungency	1.60	1.65	1.60	1.75	0.581	0.390
Sweet	3.00	3.15	3.05	3.00	0.844	0.604	Sweet	2.80	2.45	2.35	2.55	0.056	0.531
Salty	3.45	3.45	3.40	3.50	0.957	0.565	Salty	3.55	3.50	3.90	3.65	0.185	0.618
Sour	1.65	1.60	1.65	1.75	0.739	0.434	Sour	1.85	2.05	1.85	2.00	0.422	0.473
Bitter	1.60	1.50	1.60	1.65	0.700	0.408	Bitter	1.80	1.90	1.60	1.80	0.093	0.378
Umami	3.70	3.75	3.65	3.60	0.847	0.557	Umami	4.00	4.00	4.10	4.05	0.952	0.635
Overall flavor	5.55	5.85	5.75	5.90	0.277	0.604	Overall flavor	5.25	5.30	5.40	5.55	0.711	0.872
Typical flavor	5.30	5.55	5.30	5.40	0.532	0.614	Typical flavor	5.20	5.00	5.25	5.45	0.311	0.750
Plant flavor	2.60	2.50	2.60	2.60	0.911	0.530	Plant flavor**	2.10 ^b	2.60 ^a	2.40 ^{ab}	2.50 ^a	0.002**	0.452
Metallic flavor Wild/animal	2.20	2.35	2.35	2.35	0.899	0.761	Metallic flavor Wild/animal	2.45	2.55	2.55	2.35	0.810	0.755
flavor	2.35	2.40	2.30	2.50	0.794	0.651	flavor	2.15	2.25	2.05	2.00	0.652	0.671
Off flavor	1.60	1.35	1.30	1.45	0.173	0.452	Off flavor	1.25	1.40	1.25	1.35	0.281	0.294
Freshness	4.95	5.15	5.00	4.85	0.651	0.755	Freshness	4.85	5.20	4.85	5.20	0.409	0.915

Table 1 Sensory profiles of breast meat sampled at first and second slaughtering ages (150 and 180 days respectively)

Note: Different letters in the same row correspond to significantly different means according to the Tukey's Hsd post-hoc test (*p<0.05; **p<0.01); C, control; S, sustainable; SLL, sustainable + live larvae; SDL, sustainable + dried larvae; p, p-value; RSE, residual standard error.

IV. CONCLUSION

In conclusion, a dietary supplementation with 15% live or 5% dried BSF larvae did affect a few sensory attributes of BS breast meat, mainly related to texture and specifically in meat samples of SLL group. Additional studies will be performed on breast meat tenderness, even with instrumental devices, to better comprehend a possible correlation between meat tenderness, animals age and larvae supplementation. Although significant differences were found regarding the "plant flavor" perceived in meat of SDL group, further research should assess if this attribute could also be perceived by consumers or masked by meat cooking different methods.

ACKNOWLEDGEMENTS

Authors acknowledge the financial support to Poultrynsect project provided by transnational funding bodies under the Joint SUSFOOD2/CORE Organic Call 2019, and to SUSTAvianFEED project of the PRIMA program and supported by the European Union's Horizon 2020 research and innovation program.

REFERENCES

1. Dalle Zotte, A. (2021). Meat quality of poultry fed with diets supplemented with insects: A review. IOP Conference Series: Earth and Environmental Science. 854