EFFECTS OF GRADED INCLUSION LEVELS OF SORGHUM IN FINISHER DIETS FOR STEERS ON BEEF FATTY ACID PROFILES

Cletos Mapiye^{a*}, Farouk Semwogerere^a, Yonela Z. Njisane^a and Bongani Ndimba^b

^aDepartment of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.

^bInfruitec-Nietvoorbij ARC Research Institute, Stellenbosch, Western Cape, 7600, South Africa.

*Presenting author email: cmapiye@sun.ac.za

I. INTRODUCTION

Coupled with the increase in the human population and the emergence of health-conscious consumers, meat production is constrained by climate-induced feed scarcity and price spikes. For example, the average global price for maize grain, the main energy source in livestock diets, rose by more than 50% from 2020 to 2023 [1]. This calls for a paradigm shift towards the use of climate-resilient feed resources. In this context, sorghum stands out for its climate resilience, and comparable nutritional composition and animal performance to maize [2]. More interestingly, sorghum has higher contents of polyphenols (0.25 - 11.5 g GAE/ kg DM) [3] and proportions of alpha-linolenic acid (ALA, C18:3n-3; 0.6 - 5% of total fatty acids, TFA [4]) than maize. Sorghum also has comparable proportions of linoleic (LA, C18:2n-6; 27 - 52% of TFA) and oleic (C18:1n-9; 30 - 50% of TFA) acids to maize (ALA, 0.6 - 1%; LA, 38 - 57%; oleic, 31 - 33% of TFA), respectively [4,5]. Sorghum polyphenols could protect dietary polyunsaturated fatty acids (PUFA) from rumen biohydrogenation (BH) and modify the rumen environment to favour the production of health-enhancing BH products such as rumenic acid and its processor vaccenic acid which will be absorbed in the small intestines and deposited in the muscle [6,7]. However, little, if any information, is known about the effect of feeding cattle sorghum-containing finisher diets on beef fatty acid (FA) composition. Thus, the FA composition of beef from steers-fed graded levels of sorghum as a replacement for maize was evaluated in the current study.

II. MATERIALS AND METHODS

Thirty-five Angus steers (n = 7) were randomly assigned to five finisher diets containing either 0, 100, 200, 300 or 400 g/kg DM of sorghum substituting white maize. The steers were slaughtered after a 90-day feeding trial preceding a 21d adaptation period. After 24 h postmortem, the left *Longissimus thoracis et lumborum* (LTL) for each animal was harvested from 9th to 13^{th} rib for FA analysis. The lipid was extracted using chloromethanol extraction, methylated with two-stage acid-base protocol and FAMEs analysed using a GC with a 100 m capillary column and a 175 °C temperature program. All the fatty acid data was handled with GLIMMIX procedure of SAS including diet as a fixed factor.

III. RESULTS AND DISCUSSION

Increased substitution of sorghum for maize in beef finisher diets did not affect (P > 0.05) beef fatty acid composition (Table 1). The lack of difference in the fatty acid profile of beef in the current study could be attributed to a slightly similar dietary fatty acid profile and low phenolic contents. The dietary polyphenols observed were below 20 g/kg DM known to influence rumen biohydrogenation and lipolysis [6,7].

red finisher diets containing sorghur		Sorghum inclusion (g/kg DM) in the diet					<i>P</i> -value
Variable	0	100	200	300	400	- SEM ¹	Diet
∑Total fatty acid methyl esters	2114.2	2297.7	2267.7	2195.4	2241.6	247.23	0.987
$\overline{\Sigma}$ Polyunsaturated fatty acids	118.2	115.5	113.9	112.0	111.2	10.22	0.990
$\overline{\Sigma}n$ -6 Polyunsaturated fatty acids	90.4	88.1	88.2	85.7	84.6	9.33	0.993
18:2 <i>n</i> -6	64.8	63.9	64.8	62.2	61.6	7.40	0.997
18:3 <i>n</i> -6	2.2	2.3	2.3	2.2	2.2	0.20	0.993
20:3 <i>n</i> -6	2.5	2.6	2.4	2.4	2.4	0.33	0.992
20:4 <i>n</i> -6	19.5	17.9	17.6	17.6	17.2	2.70	0.981
22:4 <i>n</i> -6	1.2	1.2	0.9	0.9	0.9	0.16	0.417
$\sum n$ -3 Polyunsaturated fatty acids	14.5	14.6	14.1	14.6	14.9	1.35	0.994
18:3 <i>n</i> -3	10.5	11.0	10.3	10.7	10.9	1.26	0.995
22:5n-3	4.0	3.6	3.8	4.0	4.1	0.63	0.987
∑Conjugated linoleic acid	13.3	12.8	11.6	11.7	11.6	0.94	0.590
c9, <i>t</i> 11-18:2	7.1	7.1	6.0	5.9	6.0	0.59	0.352
<i>t</i> 10, <i>c</i> 12-18:2	3.1	2.9	2.9	3.0	3.1	0.45	0.995
c11, <i>t</i> 13-18:2	2.4	2.4	2.4	2.4	2.2	0.38	0.997
<i>t</i> 9, <i>c</i> 12-18:2	0.5	0.4	0.4	0.4	0.4	0.09	0.107
∑Monounsaturated fatty acids	1114.3	1175.9	1145.3	1169.2	1172.6	149.07	0.998
c9-16:1	70.2	72.1	71.4	72.6	72.2	10.75	0.999
<i>t</i> 10/ <i>t</i> 11-18:1	40.2	38.3	40.1	41.9	42.6	6.41	0.991
c6-18:1	69.5	71.8	69.2	71.5	72.9	7.86	0.997
c9-18:1	896.0	954.5	926.2	946.3	947.3	137.62	0.998
∑Saturated fatty acids	881.8	1006.3	1008.5	914.2	957.8	117.39	0.921
12:0	2.2	3.0	2.5	2.7	3.1	0.41	0.508
16:0	545.1	658.9	652.8	557.8	566.4	83.80	0.785
18:0	221.5	218.0	228.2	236.0	265.1	26.50	0.732

Table 1: Profile of selected fatty acids (mg/100 g) of beef *Longissimus thoracis et lumborum* from steers fed finisher diets containing sorghum substituted for maize

 $\overline{\Sigma}$: Summation; SEM: Standard error of means.

IV. CONCLUSIONS

Replacing maize with sorghum in finisher diets of steers had neutral effects on the health value of meat.

REFERENCES

- 1. Statista. (2024). Average prices for maize worldwide from 2014 to 2025. Consumer Goods & FMCG, Food & Nutrition. https://www.statista.com/statistics/675820/average-prices-maize-worldwide/. Accessed on 20 February 2024.
- Ferreira, F. A., Chizzotti, M. L., Zamudio, G. D. R., Estrada, M. M. Pacheco, M. V. C., Silva, B. C., Valdares-Filho S. C. & Rodrigues, R. T. S. (2020). Beef quality of nellore steers fed dried or rehydrated and ensiled corn or sorghum grains. Revista Colombiana de Ciencias Pecuarias 33: 121-133.
- 3. Rao, S., Santhakumar, A. B., Chinkwo, K. A., Wu, G., Johnson, S. K., & Blanchard, C. L. (2018). Characterization of phenolic compounds and antioxidant activity in sorghum grains. Journal of Cereal Science 84: 103-111.
- 4. Kaplan, M., Temizgul, R., Beyzi, S. B., Kokten, K., & Karaman, K. (2018). Classification of different Sorghum bicolor genotypes depending on fatty acid composition with using Biplot Analysis. Progress in Nutrition, 20(4), 699–705.
- 5. Yururdurmaz, C., & Yildiz, H. (2022). Fatty acid compositions of Zea mays L. varieties in Turkey. Progress in Nutrition, 24(3), 1–5.
- 6. Frutos, P., Hervás, G., Natalello, A., Luciano, G., Fondevila, M., Priolo, A., & Toral, P. G. (2020). Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Animal Feed Science and Technology, 269, 114623.
- Guerreiro, O., Alves, S. P., Soldado, D., Cachucho, L., Almeida, J. M., Francisco, A., Santos-Silva, J., Bessa, R. J. B., & Jerónimo, E. (2020). Inclusion of the aerial part and condensed tannin extract from Cistus ladanifer L. in lamb diets – Effects on growth performance, carcass and meat quality and fatty acid composition of intramuscular and subcutaneous fat. Meat Science, 160, 107945.